K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

a)\(\sqrt{3^2}=3\)và \(\sqrt{2^2}=2\)

Vì 3>2 =>\(\sqrt{3}>\sqrt{2}\)

b)\(\sqrt{5^2}=5\)\(\sqrt{28^2}=28\)

Vì 5<28=>\(\sqrt{5}< \sqrt{28}\)

3 tháng 6 2016

Bạn bình phương các vế cần so sánh rồi sẽ thấy :))

\(A< B\Rightarrow\sqrt{A}< \sqrt{B}\left(A,B\ge0\right)\)

19 tháng 10 2021

Ta có:

\(\sqrt[3]{7}< \sqrt[3]{8}=2\) và \(\sqrt{15}< \sqrt{16}=4\), suy ra \(\sqrt[3]{7}+\sqrt{15}< 6\).

\(\sqrt{10}>\sqrt{9}=3\) và \(\sqrt[3]{28}>\sqrt[3]{27}=3\), suy ra \(\sqrt{10}+\sqrt[3]{28}>6\).

Vậy \(\sqrt[3]{7}+\sqrt{15}< \sqrt{10}+\sqrt[3]{28}\).

11 tháng 8 2023

Đặt: 

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)

\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)  

\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

Mà: \(4\sqrt{5}>1\)

Nên: \(A^2< B^2\)

\(\Rightarrow A< B\)

Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

=>A^2=(căn 10)^2=10=9+1

Đặt B=2+căn 5

=>B^2=(2+căn 5)^2=9+4căn 5

1<4căn 5

=>9+1<9+4căn 5

=>A^2<B^2

=>A<B

8 tháng 9 2021

\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)

\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)

\(\sqrt{2}\) + \(\sqrt{3}\)  > 2

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)

\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

Do đó: A=B

21 tháng 5 2022

\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)

\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

--> Bằng nhau

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

11 tháng 5 2022

Ta có 3 + √2 < 3 + 2 = 5

Mặt khác 3 + √2 > 1

Do đó: √3+√23+2  < √5