Cho:n>=2, n thuộc N. CM: 1/2.3^2 + 1/3.4^2 +........+ 1/n(n+1)^2 < 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{\left(n-1\right)n-1}{n!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4}!+\frac{1}{3!}-\frac{1}{5!}+\frac{1}{4!}-...+\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)
\(=2-\frac{1}{n!}< 2\)
Vậy ...
Cách lớp 7 nà:)
\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_
\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)
Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)
Vậy ta có đpcm
Gắt chưa??? :>> Dương Bá Gia Bảo
(1-2/2.3).(1-2/3.4).....(1-2/n.(n-1))=2021/6062
= ( \(\dfrac{6}{2.3}\) -\(\dfrac{2}{2.3}\) ). (\(\dfrac{12}{3.4}\) - \(\dfrac{2}{3.4}\) )......( \(\dfrac{9900}{99.100}\) - \(\dfrac{2}{99.100}\) )
= 4/2.3 .10/3.4..... 9898/99.100
= 1.4/2.3 . 2.5/3.4 .... 98.101/99.100
=\(\dfrac{1.2.3.4...98}{2.3...99}\) . \(\dfrac{4.5.6...101}{3.4.5...100}\)
= 1/99.101/3
= 101/297
(1-2/2.3).(1-2/3.4).....(1-2/n.(n-1))=2021/6062
= ( 62.362.3 -22.322.3 ). (123.4123.4 - 23.423.4 )......( 990099.100990099.100 - 299.100299.100 )
= 4/2.3 .10/3.4..... 9898/99.100
= 1.4/2.3 . 2.5/3.4 .... 98.101/99.100
=1.2.3.4...982.3...991.2.3.4...982.3...99 . 4.5.6...1013.4.5...1004.5.6...1013.4.5...100
= 1/99.101/3
= 101/297
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
k . (k+ 1) . (k+2) - k .(k +1) . (k-1)
= [ (k+2)-(k -1) ] .k .(k+1)
= (k + 2 -k +1) . k .(k+1)
= 3k (k+1)
Vậy: k . (k+ 1) . (k+2) - k .(k +1) . (k-1) = 3k (k+1)
S = 1.2+2.3+...+n.(n+1)
3S = 3.1.2 +3.2.3+...+3.n. (n+1)
3S = 1.2.3 - 0.1.2 +2.3.4 -1.2.3 + ... + n . (n+1 ) . (n+2) - (n-1).n.(n+1)
3S = n.(n+1).(n+2)