cho (P) y=ax2 đi qua A (-2 ; -1 )
(d) y =-1/2x - 1/2
a) tìm a , vẽ (p) va (d) trên cùng mặt phẳng toạ độ
b) gọi B gđ của (d) va (P) với hoành độ dương cmr AB song song với trục chính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THam khảo
Bài 2:
Ta có: −Δ4a=−3−Δ4a=−3
⇔−Δ=−12a⇔−Δ=−12a
⇔b2−4a=12a⇔b2−4a=12a
⇔b2−16a=0(1)⇔b2−16a=0(1)
Thay x=-1 và y=6 vào (P), ta được:
a⋅(−1)2+b(−1)+1=6a⋅(−1)2+b(−1)+1=6
⇔a−b=5⇔a−b=5
⇔a=b+5⇔a=b+5(2)
Thay (2) vào (1), ta được:
b2−16(b+5)=0b2−16(b+5)=0
⇔b2−16b+64−144=0⇔b2−16b+64−144=0
⇔(b−8)2=144⇔(b−8)2=144
⇔[b=20b=−4⇔[a=25a=1
a, y = ax^2 đi qua B(2;4)
<=> 4a = 4 <=> a = 1
b, bạn tự vẽ
a: Thay x=2 và y=4 vào hàm số, ta được:
\(a\cdot4=4\)
hay a=1
b: Thay x=2 và y=4 vào hàm số, ta được:
4a=4
hay a=1
a: Thay x=1 và y=-2 vào (P), ta được:
a*1^2=-2
=>a=-2
=>y=-2x^2
b: PTHĐGĐ là:
ax^2-4x-1=0
Δ=(-4)^2-4*a*(-1)=4a+16
Để (P) và (d) có ít nhất 1 điểm chung thì 4a+16>=0
=>a>=-4
(P) đi qua điểm A (−2; 4) nên 4 = a. ( − 2 ) 2 = 4a a = 1
Vậy phương trình parabol (P) là y = x 2 .
Để (P) tiếp xúc với (d) thì phương trình hoành độ giao điểm
x 2 = 2 (m – 1)x – (m – 1)có nghiệm kép
↔ ∆ ’ = [ − ( m – 1 ) ] 2 − m + 1 = 0 ↔ m 2 – 2m + 1 − m + 1 = 0 ↔ m 2 – 3m + 2 = 0 ↔ m=1 hoặc m=2
Nếu m = 1 thì hoành độ giao điểm là x = 0. Vậy tiếp điểm là (0; 0)
Nếu m = 2 thì hoành độ giao điểm là x = 1. Vậy tiếp điểm là (1; 1)
Đáp án: C
Lời giải:
Để $(P): y=ax^2$ đi qua điểm $A(-2;-4)$ thì:
$y_A=ax_A^2\Leftrightarrow -4=a(-2)^2\Leftrightarrow a=-1$
Đồ thị $(P)$ có dạng: $y=-x^2$ được biểu diễn như sau: