so sánh 2180 và 3144
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{180}=\left(2^5\right)^{36}=32^{36}\)
\(3^{144}=\left(3^4\right)^{36}=81^{36}\)
Do\(32< 81\Rightarrow32^{36}< 81^{16}\Rightarrow2^{180}< 3^{144}\)
2180 và 3144
2180 = ( 290 )2
3144 = ( 372 )2
Sau đó cứ so sánh tiếp nhé
2^180 = 2^5^36 = 32^36.
3^144 = 3^4^36 = 81^36.
Vì 32 < 81.
Nên 32^36 < 81^36.
Vậy 2^180 < 3^144.
\(3^{216}=\left(3^2\right)^{72}=9^{72}\)
\(5^{144}=\left(5^2\right)^{72}=25^{72}\)
vì 2572 > 972 nên 5144 > 3216
2^x+2^x+3=144
2^x+2^x.2^3=144
2^x(1+2^3)=144
2^x.9=144
2^x=16
2^x=2^4=>x=4
\(2^{300}=\left(2^5\right)^{60}=32^{60}\)
\(3^{180}=\left(3^3\right)^{60}=27^{60}\)
Vì 32 > 27 nên \(32^{60}>27^{60}\)
Vậy \(2^{300}>3^{180}\)
Sửa đề: \(98+99+\dfrac{142}{144}\) \(\rightarrow\dfrac{98}{99}+\dfrac{143}{144}\)
Giải:
\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+\dfrac{62}{63}+\dfrac{98}{99}+\dfrac{143}{144}+\dfrac{194}{195}\)
\(A=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{195}\right)\)
\(A=7-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{195}\right)\)
\(A=7-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\dfrac{14}{15}\right]\)
\(A=7-\dfrac{7}{15}\)
\(A=\dfrac{98}{15}\)
Chúc bạn học tốt!
Dễ mà:vvv
Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)
Mà \(\sqrt{144}=12\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)
Ta có: \(\sqrt{37}>\sqrt{36}=6\)
\(\sqrt{26}>\sqrt{25}=5\)
Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)
\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)
hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)
2^180=32^36
3^144=81^36
nên 2^180<3^144