K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó: ΔBAE=ΔBIE

Suy ra: BA=BI

hay ΔBIA cân tại B

b: Ta có: ΔBAE=ΔBIE

nên EA=EI

hay E nằm trên đường trung trực của AI(1)

Ta có: BA=BI

nên B nằm trên đường trung trực của AI(2)

Từ (1) và (2) suy ra BE là đường trung trực của AI

hay BE\(\perp\)AI

c: Xét ΔAEK vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEK}=\widehat{IEC}\)

Do đó:ΔAEK=ΔIEC

Suy ra: AK=IC

Ta có: BA+AK=BK

BI+IC=BC

mà BA=BI

và AK=IC

nên BK=BC

hay ΔBKC cân tại B

d: Xét ΔBKC có BA/BK=BI/BC

nên AI//KC

NV
2 tháng 1 2024

a.

Ta có \(BD||AC\) (cùng vuông góc AB)

Áp dụng định lý Talet trong tam giác ACE: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

b.

Ta có \(IK||BD||AC\) \(\Rightarrow EI||AC\)

Áp dụng Talet: \(\dfrac{DC}{ED}=\dfrac{DA}{ID}\Rightarrow\dfrac{DC}{DC+ED}=\dfrac{DA}{DA+ID}\Rightarrow\dfrac{DC}{CE}=\dfrac{DA}{AI}\) (1)

Do \(BD||EK\), áp dụng Talet trong tam giác CEK: \(\dfrac{BD}{EK}=\dfrac{CD}{CE}\) (2)

Do \(BD||EI\), áp dụng Talet trong tam giác AEI: \(\dfrac{BD}{EI}=\dfrac{AD}{AI}\) (3)

Từ(1);(2);(3) \(\Rightarrow\dfrac{BD}{EK}=\dfrac{BD}{EI}\Rightarrow EK=EI\)

NV
2 tháng 1 2024

loading...

24 tháng 7 2017

cmsa;lcsacascsa

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: Xét ΔOMC vuông tại M có MH là đường cao

nên \(HC\cdot HO=HM^2\left(1\right)\)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(HA\cdot HB=HM^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)

c: Xét tứ giác AMBQ có

O là trung điểm của AB và MQ

Do đó: AMBQ là hình bình hành

Hình bình hành AMBQ có AB=MQ

nên AMBQ là hình bình hành

23 tháng 12 2021

các bạn ơi nhanh nhé mình cần gấp mà

23 tháng 12 2021

- Vẽ trục tọa độ Oxy và biểu diễn các điểm:

- Tứ giác ABCD là hình vuông.