K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A(x)=0

\(\Leftrightarrow5x-42+2x-7=0\)

\(\Leftrightarrow7x=49\)

hay x=7

Vậy: Nghiệm của đa thức A(x)=5x-42+2x-7 là x=7

18 tháng 4 2021

câu 1

a, P(x)=\(5x^2-2x^4+2x^3+3\)

  \(P\left(x\right)=-2x^4+2x^3+5x^2+3\)

\(Q\left(x\right)=2x^4-5x^2-x+1-2x^3\)

\(Q\left(x\right)=2x^4-2x^3-5x^2-x+1\)

b, Ta có A(x)=P(x)+Q(x)

thay số A(x)=\(\left(-2x^4+2x^3+5x^2+3\right)+\left(2x^4-2x^3-5x^2-x+1\right)\)

                   =\(-2x^4+2x^3+5x^2+3+2x^4-2x^3-5x^2-x+1\)

                   \(=-x+4\)

c, A(x)=0 khi 

\(-x+4=0\)

\(x=4\)

vậy no của đa thức là 4

câu 2

tự vẽ hình nhé 

a, xét \(\Delta\) ABC cân tại A có AD là pg 

=> AD vừa là dg cao vừa là đg trung tuyến ( t/c trong tam giác cân )

xét \(\Delta\) ADB vg tại D ( áp dụng định lí Py ta go trong tam giác vg ) có 

\(AB^2=BD^2+AD^2\\ \Rightarrow BD^2=9\Rightarrow BD=3\)

Ta có D là trung đm của BC ( AD là đg trung tuyến ứng vs BC) 

=> BD=CD=\(\dfrac{1}{2}BC\)

=> BC= 6cm

câu b đang nghĩ 

29 tháng 5 2021

a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12

= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x

= 6x4 - 17 + 6x3 - 5x

= 6x4 + 6x3 - 5x - 17

B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2

= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2

= 4x4 + 6x3 - 5x - 15 - 2x2

= 4x4 + 6x3 - 2x2 - 5x - 15

b) C(x) = A(x) - B(x)

=  6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)

= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15

= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2

= 2x4 - 2 + 2x2 

= 2x4 + 2x2 - 2

19 tháng 5 2021

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`=-5x^3+4x-5`

`M(x)=P(x)+Q(x)`

`=5x^3-3x+7-5x^3+4x-5`

`=x+2`

`N(x)=P(x)-Q(x)`

`=5x^3-3x+7+5x^3-4x+5`

`=10x^3-7x+12`

b)Đặt `M(x)=0`

`<=>x+2=0`

`<=>x=-2`

Vậy M(x) có nghiệm `x=-2`

1k like đâu haha

19 tháng 5 2021

a) \(P\left(x\right)=5x^3-3x+7-x\\ =5x^3+\left(-3x-x\right)+7\\ =5x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\\ =-5x^3+\left(2x+2x\right)+\left(-3-2\right)+x^2\\ =-5x^3+4x-5+x^2\)

 

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\\ =5x^3-4x+7+\left(-5x^3\right)+4x-5-x^2\\ =\left(5x^3-5x^3\right)+\left(-4x+4x\right)+\left(7-5\right)-x^2\\ =2-x^2\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)\\ =5x^3-4x+7-\left(-5x^3+4x-5+x^2\right)\\ =5x^3-4x+7+5x^3-4x+5-x^2\\ =\left(5x^3+5x^3\right)+\left(-4x-4x\right)+\left(7+5\right)+x^{^2}\\ =10x^3-8x+12+x^2\)

NV
17 tháng 4 2022

a.

\(P-\left(5x^4-xyz\right)=xy+2x^4-6xyz+654\)

\(\Rightarrow P=5x^4-xyz+xy+2x^4-6xyz+654\)

\(\Rightarrow P=7x^4-7xyz+xy+654\)

b.

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

`1)`

`A(x)=x^3-2x^2+5x-2-x^3+x+7`

`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`

`A(x)=-2x^2+6x+5`

Bậc của đa thức: `2`

Hệ số cao nhất: `-2`

Hệ số tự do: `5`

`2)`

`H(x)-(2x^2 + 3x – 10) = A(x)`

`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`

`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`

`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`

`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`

`H(x)=9x-5`

`3)`

Đặt `9x-5=0`

`9x=0+5`

`9x=5`

`-> x=5/9`

 

2 tháng 4 2023

loading...  

3 tháng 5 2023

a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)

b,  \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)

Thay \(x=-1\) vào \(B\left(x\right)\)

\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)

\(\Rightarrow x=-1\) không là nghiệm của B(x) 

30 tháng 4 2021

a, \(P+\left(5x^2+9xy\right)=6x^2+9xy-x\)

\(\Rightarrow P=x^2-x\)

Gỉa sử : x = 1 là nghiệm của đa thức 

Thay x = 1 vào P ta được : \(1-1=0\)*đúng*

Vậy x = 1 là nghiệm của đa thức trên 

b, Với \(x\ge\frac{1}{7}\)đa thức có dạng : \(A=2x^2+7x-1-5+x-2x^2=8x-6\)(1) 

Với \(x< \frac{1}{7}\)đa thức có dạng : \(A=2x^2-7x+1-5+x-2x^2=-6x-4\)(2) 

TH1 : Với đa thức (1) ta có : \(8x-6=2\Leftrightarrow x=1\)

TH2 : Với đa thức (2) ta có : \(-6x-4=2\Leftrightarrow x=-1\)

8 tháng 5 2017

a) P(x)=5x- 3x - x + 7

Q(x)=-5x3- x+ 2x + 2x -3 - 2

b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x+ 2x + 2x - 3 - 2 )

                       =5x- 3x - x + 7 - 5x- x+ 2x + 2x - 3 - 2

                       =(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

           => M = -x2+2

P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)

               = 5x3-3x-x+7+5x3-x2+2x+2x-3-2

               =(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

       => N =10x3 -x2 +2

c)-x2+2=0

-x2=0+2

-x2=2

=>-x2=\(-\sqrt{2}\)

10 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x = 5x3 + ( -3x - x ) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + ( 2x + 2x ) - x2 + ( -3 - 2 ) = -5x3 + 4x - x2 - 5

M(x) = P(x) + Q(x) 

= 5x3 - 4x + 7 + ( -5x3 + 4x - x2 - 5 )

= ( 5x3 - 5x3 ) + ( 4x - 4x ) - x2 + ( 7 - 5 )

= -x2 + 2

N(x) = P(x) - Q(x) 

= ( 5x3 - 4x + 7 ) - ( -5x3 + 4x - x2 - 5 )

= 5x3 - 4x + 7 + 5x3 - 4x + x2 + 5

= ( 5x3 + 5x3 ) + ( -4x - 4x ) + x2 + ( 7 + 5 )

= 10x3 - 8x + x2 + 12

M(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

             <=> x2 = 2

             <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của M(x) là \(\pm\sqrt{2}\)