1/2x-1=y/5+1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4
Đặt \(\dfrac{1}{x+y-1}=a;\dfrac{1}{2x-y+3}=b\)
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}4a-5b=\dfrac{5}{3}\\3a+b=\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12a-15b=5\\12a+4b=\dfrac{28}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-19b=\dfrac{-3}{5}\\3a+b=\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3}{95}\\a=\dfrac{26}{57}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-1}=\dfrac{26}{57}\\\dfrac{1}{2x-y+3}=\dfrac{3}{95}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y-1=\dfrac{57}{26}\\2x-y+3=\dfrac{95}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{83}{26}\\2x-y=\dfrac{86}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{2485}{78}\\x+y=\dfrac{83}{26}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2485}{234}\\y=\dfrac{83}{26}-\dfrac{2485}{234}=\dfrac{-869}{117}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{2485}{234};\dfrac{-869}{117}\right)\)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
=>x+1=1 và y-2=1/2
=>x=0 và y=5/2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)
=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6
=>x-2y=9 và 2x-y=12
=>x=5; y=-2
c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
đăng ít thôi bạn! Nếu bạn đăng lẻ ra thì bn sẽ nhận đc sự trợ giúp nhanh hơn !
a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)
Câu 1 : x+1=1 => x = 0 => pt trên =-1 loại
x+1 = 3 => x= 2 => 2y-1=3 => y=2
vậy x=2;y=2
câu 2 : 2x-1 = 1 > x = 1 ; y +4=7 => y=3
2x-1 = 7 => x=4 ; y +7 = 1 => y = -6 loại
vậy x=1, y=3 v
\(\frac{1}{2x-1}=\frac{y}{5}+\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2x-1}=\frac{3y+5}{15}\)
\(\Leftrightarrow\left(2x-1\right).\left(3y+5\right)=15\)
\(\Rightarrow2x-1;3y+5\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)(mình lười nên lấy x ,y \(\ge0\)nếu âm thì bạn lấy thêm)
5
vậy các cặp giá trị (x,y)={(1;10/3),(2;0),(8;-4/3),(3;-2/3)}