K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

đk n khác 0 để psố có nghĩa

qui đồng ta có;

4 +2m = 2n

2(n-m) =4

n-m =2

nếu n = 1 thi m =-1

nếu n =2 thì m=0

.....

14 tháng 5 2016

đk 0 khác 0 để psố coc nghĩa

quy đồng ta có 

4 + 2m = 2n

2(n-m)=4

n-m=2

nếu n=1 thì m= 1

nếu n=2 thì m=0

ai thấy đúng thì tích mk nha

17 tháng 4 2016

Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)

              \(\frac{1}{3^2}<\frac{1}{2.3}\)

              ...

             \(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{n}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<1\)

17 tháng 4 2016

cảm ơn nhiều

21 tháng 4 2016

Ta có : \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}\)

 \(\Leftrightarrow S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=\frac{1}{1}-\frac{1}{n+3}\)

\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}<1\)

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

21 tháng 2 2018

mk nghĩ là nguyễn việt hoàng làm sai rồi!

29 tháng 7 2017

Đặt: \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(=\frac{1-\left[\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right]}{1-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}\)

\(=\frac{1-\frac{99}{1}}{1-\frac{1}{100}}\)

\(M=\frac{-98}{99}\)

Đặt \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

\(=\frac{92+\left[\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right]}{1-\left[\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right]}\)

\(=\frac{92+\frac{92}{100}}{1-\frac{1}{500}}\)

\(=\frac{92+\frac{92}{100}}{\frac{499}{500}}\)

Tự làm tiếp đi!

30 tháng 7 2017

1 ) 

m = 3 

n = 2 

biết vậy nhưng ko biết cách giải