K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(2n+2021;2n+2023)

=>2n+2023-2n-2021 chia hết cho d

=>2 chia hết cho d

mà 2n+2021 ko chia hết cho 2

nên d=1

=>ĐPCM

12 tháng 1 2023

Gọi d=ƯCLN(2n+2021;2n+2023)

=>2n+2023-2n-2021 chia hết cho d

=>2 chia hết cho d

mà 2n+2021 ko chia hết cho 2

nên d=1

=>ĐPCM

 

23 tháng 6 2023

Help me plsssssssssss

23 tháng 6 2023

Ta có: `a^2+2023=a^2+ab+bc+ca=a(a+b)+c(a+b)=(a+b)(c+a)`

Do vai trò ba biến `a,b,c` như nhau nên ta có: `b^2+2023=(b+c)(a+b);c^2+2023=(c+a)(b+c)`

`=>A=\sqrt(((a+b)(b+c)(c+a))^2)=|(a+b)(b+c)(c+a)|\inQQ`

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

\(A=2.2022^{2023}+2(1^{2023}+2^{2023}+3^{2023}+...+1010^{2023}+1011^{2023}+1012^{2023}+...+2021^{2023})\)

\(=2.2022^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})+1011^{2023}]\)

\(=2.2022^{2023}+2.1011^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})]\)

Dễ thấy: $2.2022^{2023}\vdots 2022; 2.1011^{2023}=2022.1011^{2023}\vdots 2022$

Đối với biểu thức trong ngoặc vuông thì: Nhớ rằng với mọi $n$ lẻ thì $a^n+b^n\vdots a+b$ nên $1^{2023}+2021^{2023}\vdots 2022; 2^{2023}+2019^{2023}\vdots 2022;...; 1010^{2023}+1012^{2023}\vdots 2022$

$\Rightarrow 2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+....+(1010^{2023}+1012^{2023})]\vdots 2022$

Do đó $A\vdots 2022$

20 tháng 3 2023

A=322+832+1542+....+20232120232�=322+832+1542+....+20232-120232

A=1122+1132+1142+....+1120232�=1-122+1-132+1-142+....+1-120232

A=2022(122+132+142+...+120232)�=2022-(122+132+142+...+120232)

122+132+142+...+120232<11.2+12.3+13.4+...+12022.2023122+132+142+...+120232<11.2+12.3+13.4+...+12022.2023

11.2+12.3+13.4+...+12022.2023=112+1213+....1202311.2+12.3+13.4+...+12022.2023=1-12+12-13+....-12023

0<122+132+142+...+120232<112023<1⇒0<122+132+142+...+120232<1-12023<1

2022(122+132+142+...+120232)⇒2022-(122+132+142+...+120232)ko phải số tự nhiên

A⇒� ko phải số tự nhiên

9 tháng 4 2023

322+832+1542+....+20232-120232"" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-table; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=322+832+1542+....+20232−120232�=322+832+1542+....+20232-120232A=

1-122+1-132+1-142+....+1-120232"" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=1−122+1−132+1−1(2+....+1)120232�=1-122+1-132+1-142+....+1-1202321+12+13+...+122023−1

2022-(122+132+142+...+120232)"" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=2022−(122+132+142+...+120232)�=2022-(122+132+142+...+120232)A

122+132+142+.... <20232

Do (2023x)20(2023−�)2≥0 với mọi x nên:

3(y3)2=16(2023x)216<183(�−3)2=16−(2023−�)2≤16<18

(y3)2<6⇒(�−3)2<6

Mà (y3)20(�−3)2≥0 và (y3)2(�−3)2 là số chính phương với mọi y nguyên.

(y3)2=0⇒(�−3)2=0 hoặc (y3)2=4(�−3)2=4

Nếu (y3)2=0(�−3)2=0 thì y=3�=3.

Khi đó: (2023x)2=163.02=16(2023−�)2=16−3.02=16

2023x=4⇒2023−�=4 hoặc 2023x=42023−�=−4

x=2019⇒�=2019 hoặc x=2027�=2027

Nếu (y3)2=4y3=2(�−3)2=4⇒�−3=2 hoặc y3=2�−3=−2

y=5⇒�=5 hoặc y=1�=1
Khi đó:

(2023x)2=163.4=4=22=(2)2(2023−�)2=16−3.4=4=22=(−2)2
2023x=2⇒2023−�=2 hoặc 2023x=22023−�=−2

x=2021⇒�=2021 hoặc x=2025

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

9 tháng 9 2023

     Hôm nay olm sẽ hướng dẫn các em dùng phương pháp phản chứng chứng minh bài này trong một nhạc.

   Giả sử p + 2023 là số nguyên tố ⇒ p phải là số chẵn 

⇒ p = 2 (vì p là số nguyên tố) 

⇒ p + 4 = 2 + 4 = 6 (là hợp số trái với đề bài) 

Vậy điều giả sử là sai hay với p; p + 4 đồng thời là số nguyên tố thì 

    p + 2023 là hợp số (đpcm)

    

 

9 tháng 9 2023

 Giả sử p + 2023 là số nguyên tố ⇒ p phải là số chẵn 

⇒ p = 2 (vì p là số nguyên tố) 

⇒ p + 4 = 2 + 4 = 6 (là hợp số trái với đề bài) 

Vậy điều giả sử là sai hay với p; p + 4 đồng thời là số nguyên tố thì 

    p + 2023 là hợp số (đpcm)

24 tháng 12 2022

a,A= { x \(\in\) Z/ -1945 < x \(\le\) 2023}

  A = { -1944; -1943; -1942;  -1941;... ......;2020; 2021; 2022; 2023}

b, Tổng các phần tử có trong tập hợp A là:

B = -1944 + ( -1943) + (-1942 ) + (-1941) +....+ 2020 + 2021 + 2022 + 2023

Các cặp số đối nhau có trong tổng B là 1944 cặp mà hai số đối nhau có ytoongr bằng 0 vậy tổng B là:

B = 0 x 1944 + 1945 + 1946 +....+ 2020+2021+2022 + 2023

B = 0 + (2023+1945).{ ( 2023 - 1945 ) : 1 + 1} : 2

B = 156736

Bài 2 : CM hai số  12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau \(\forall\) n \(\in\) N

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d . Theo bài ra ta có :

\(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

 trừ vế cho vế ta được : 60n + 5 - (60n +4) \(⋮\) d

                                        60n + 5 - 60n - 4 \(⋮\) d

                                                                1 \(⋮\) d

                                                           \(\Rightarrow\) d = 1

Ước chung lớn nhất của 12n + 1 và 30n + 2 là 1 

Vậy  12n + 1 và  30n +2  là hai số nguyên tố cùng nhau (đpcm)

 

24 tháng 12 2022

cảm ơn ạ >O<