Tính
\(y=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
CMR y<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
Vế trái =VT
\(VT< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(VT< 1+\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{50-49}{49x50}\)
\(VT< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)
Gọi biểu thức trên là A.
Chứng minh A > 50
\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)
\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)
\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)
\(< =>A>\frac{100}{2}=50\)
Chứng minh A<100
\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)
\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)
\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)
\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)
ta có : 1+1/2+1/3+....+1/2^100-1
= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2
= 2x(1/2+1/3+1/4+...+1/2^100)
=.................... làm đến đây mk tịt
Ta có: \(55+5\)1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 +.....+ 1/50^2 = 1/1^2 + 1/2^2 + (1/3^2 + 1/4^2 +....+ 1/50^2 )
< 1 + 1/4 + (1/2*3 + 1/3*4 +...+1/49*50) = 1 + 1/4 + (1/2 - 1/3 + 1/3 - 1/4+...+1/49 - 1/50 )
= 1,73 = 173/100 (dpcm)
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)
y=1/2^2+1/3^2.........+1/2013^2 < 1/1.2 + 1/2.3 +.....+ 1/2012.2013
ta có 1/k-1/k+1=1/k(k+1)
suy ra y<1-1/2013
đặt A=1+1/1.2+1/2.3+...+1/49.50
ta có:y=1/1^2+1/2^2+...+1/50^2<A=1+1/1.2+1/2.3+...+1/49.50
mà A=1+1/1.2+1/2.3+...+1/49.50
=1+1-1/2+1/2-1/3+...+1/49-1/50
=2-1/50<2
=>y<2 (đpcm)
đặt A=1+1/1.2+1/2.3+...+1/49.50
ta có:y=1/1^2+1/2^2+...+1/50^2<A=1+1/1.2+1/2.3+...+1/49.50
mà A=1+1/1.2+1/2.3+...+1/49.50
=1+1-1/2+1/2-1/3+...+1/49-1/50
=2-1/50<2
=>y<2 (đpcm)