Tim x:
1/3+1/6+1/10+...+2/x(x+1)=2015/2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2016\)
\(\frac{2}{6}\)\(+\frac{2}{12}\)\(+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}\div2\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)
\(\frac{1}{x+1}=\frac{1}{2017}\)
\(=>x+1=2017\)
\(=>x=2016\)
Chúc bạn học tốt Vu_anh_tuan !
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)
= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]
=2[1/2-1/(x+1)]= (x-1)/(x+1)
= 2001/2003
==> x=2002
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2015}{2017}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{4032}{2017}\)
\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{4032}{2017}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{4032}{2017}:2\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4032}{2017}.\frac{1}{2}\)
\(1-\frac{1}{x+1}=\frac{2016}{2017}\)
\(\frac{x}{x+1}=\frac{2016}{2017}\)
=> \(x=2016\)
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}:2\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)
\(\frac{1}{x+1}=\frac{1}{2017}\)
=>x+1=2017
=>x=2016
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}:2\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\)
\(\frac{1}{x+1}=\frac{1}{4032}\)
=>x+1=4032
=>x=4031