\dfrac1{7} 1 \dfrac{5}{14} 5Tỉ số của \dfrac1{7}71 và \dfrac{5}{14}145 bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)
\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)
b, Với \(x\ge0;x\ne1\)
\(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)
\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)
Vậy biểu thức ko phụ thuộc biến x
c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên
thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
\(\sqrt{x}\) | 2 | 0 | 3 | -1 |
x | 4 | 0 | 9 | vô lí |
Lời giải:
a. $\frac{5}{9}=\frac{5\times 2}{9\times 2}=\frac{10}{18}$
b. $\frac{9}{20}=\frac{9\times 3}{20\times 3}=\frac{27}{60}$
\(a.\)
\(14:\dfrac{2}{11}=14\cdot\dfrac{11}{2}=77\)
\(b.\)
\(\dfrac{25}{14}:\dfrac{5}{7}=\dfrac{25}{14}\cdot\dfrac{7}{5}=\dfrac{5}{2}\)
\(c.\)
\(-\dfrac{10}{27}:\dfrac{5}{9}=\dfrac{-10}{27}\cdot\dfrac{9}{5}=-\dfrac{2}{3}\)
\(d.\)
\(90:30\%=\dfrac{90\cdot100}{30}=300\)
a, \(14:\dfrac{2}{11}=14.\dfrac{11}{2}=77\)
b, \(\dfrac{25}{14}:\dfrac{5}{7}=\dfrac{25}{14}.\dfrac{7}{5}=\dfrac{5}{2}\)
c, \(\dfrac{-10}{27}:\dfrac{5}{9}=\dfrac{-10}{27}.\dfrac{9}{5}=\dfrac{-2}{3}\)
d, \(90:30\%=90:\dfrac{30}{100}=90.\dfrac{100}{30}=300\)
a) \(\dfrac{5}{9}< \dfrac{7}{9}\)
b) \(\dfrac{7}{6}>\dfrac{6}{6}\)
c) \(\dfrac{3}{14}< \dfrac{5}{14}\)
d) \(\dfrac{5}{8}< \dfrac{9}{8}\)
Giải:
\(9-3\times\left(x-9\right)=6\)
\(3\times\left(x-9\right)=9-6\)
\(3\times\left(x-9\right)=3\)
\(x-9=3:3\)
\(x-9=1\)
\(x=1+9\)
\(x=10\)
\(4+6\times\left(x+1\right)=70\)
\(6\times\left(x+1\right)=70-4\)
\(6\times\left(x+1\right)=66\)
\(x+1=66:6\)
\(x+1=11\)
\(x=11-1\)
\(x=10\)
\(\dfrac{x}{13}+\dfrac{15}{26}=\dfrac{46}{52}\)
\(\dfrac{x}{13}=\dfrac{23}{26}-\dfrac{15}{26}\)
\(\dfrac{x}{13}=\dfrac{4}{13}\)
\(\Rightarrow x=4\)
\(\dfrac{11}{14}-\dfrac{3}{x}=\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{11}{14}-\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{3}{7}\)
\(\Rightarrow x=7\)
\(5\times\left(3+7\times x\right)=40\)
\(3+7\times x=40:5\)
\(3+7\times x=8\)
\(7\times x=8-3\)
\(7\times x=5\)
\(x=5:7\)
\(x=\dfrac{5}{7}\)
\(x\times6+12:3=120\)
\(x\times6+4=120\)
\(x\times6=120-4\)
\(x\times6=116\)
\(x=116:6\)
\(x=\dfrac{58}{3}\)
\(x\times3,7+x\times6,3=120\)
\(x\times\left(3,7+6,3\right)=120\)
\(x\times10=120\)
\(x=120:10\)
\(x=12\)
\(\left(15\times24-x\right):0,25=100:\dfrac{1}{4}\)
\(\left(360-x\right):0,25=400\)
\(360-x=400.0,25\)
\(360-x=100\)
\(x=360-100\)
\(x=260\)
\(71+65\times4=\dfrac{x+140}{x}+260\)
\(\left(x+140\right):x+260=71+260\)
\(x:x+140:x+260=331\)
\(1+140:x+260=331\)
\(140:x=331-1-260\)
\(140:x=70\)
\(x=140:70\)
\(x=2\)
\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=155\)
\(10\times x+\left(1+4+7+...+28\right)=155\)
Số số hạng \(\left(1+4+7+...+28\right)\) :
\(\left(28-1\right):3+1=10\)
Tổng dãy \(\left(1+4+7+...+28\right)\) :
\(\left(1+28\right).10:2=145\)
\(\Rightarrow10\times x+145=155\)
\(10\times x=155-145\)
\(10\times x=10\)
\(x=10:10\)
\(x=1\)
Đều theo cách lớp 5 nha em!
`7/8=(7xx5)/(8xx5)=35/40`
`7/5xx(7xx8)/(5xx8)=56/40`
`14/16=(14:2)/(16:2)=7/8=(7xx5)/(8xx5)=35/40`
\(\dfrac{47}{95}\) và \(\dfrac{35}{69}\)
\(\dfrac{47}{95}< \dfrac{1}{2}\) và \(\dfrac{35}{69}>\dfrac{1}{2}\)
Vậy \(\dfrac{47}{95}< \dfrac{35}{69}\)
\(\dfrac{53}{103}\) và \(\dfrac{71}{145}\)
\(\dfrac{53}{103}>\dfrac{1}{2}\) và \(\dfrac{71}{145}< \dfrac{1}{2}\)
Vậy \(\dfrac{53}{103}>\dfrac{71}{145}\)
\(\dfrac{2009}{2010}\) và \(\dfrac{2005}{2006}\)
\(1-\dfrac{2009}{2010}=\dfrac{1}{2010}\) và \(1-\dfrac{2005}{2006}=\dfrac{1}{2006}\)
Vậy \(\dfrac{2009}{2010}>\dfrac{2005}{2006}\)
\(\dfrac{783}{901}\) và \(\dfrac{738}{915}\)
\(\dfrac{738}{915}< \dfrac{783}{915}< \dfrac{783}{901}\)
Vậy \(\dfrac{783}{901}>\dfrac{738}{915}\)