Cho x,y>0 và xy=4.Tìm GTNN của \(Q=\dfrac{x^3}{4\left(y+2\right)}+\dfrac{y^3}{4\left(x+2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
\(x^3 +y^3 + 3(x^2 +y^2 ) +4(x+y) + 4 = 0 \\\ \Leftrightarrow (x+y+2)[(x+1)^{2}+(y+1)^{2}-(x+1)(y+1)+1]=0\\\ \Rightarrow x+y=-2\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=-\frac{2}{xy}\leq -\frac{2}{\frac{(x+y)^{2}}{4}}=-2\)
Dấu ''='' xảy ra khi \(x=y=-1\)
\(Q=\dfrac{xyz}{z^3\left(x+y\right)}+\dfrac{xyz}{x^3\left(y+z\right)}+\dfrac{xyz}{y^3\left(x+z\right)}\)
\(=\dfrac{1}{z^3\left(x+y\right)}+\dfrac{1}{y^3\left(x+z\right)}+\dfrac{1}{x^3\left(y+z\right)}\) (vì xyz = 1)
\(=\dfrac{\left(\dfrac{1}{z}\right)^2}{z\left(x+y\right)}+\dfrac{\left(\dfrac{1}{y}\right)^2}{y\left(x+z\right)}+\dfrac{\left(\dfrac{1}{x}\right)^2}{x\left(y+z\right)}\)
Áp dụng BĐT cauchy schwarz với x,y,z > 0 ta có:
\(Q\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{xy+yz+xz}{2}\)Mặt khác theo BĐT cauchy với x;y;z>0 thì
\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)
Vậy MinQ = \(\dfrac{3}{2}\Leftrightarrow x=y=z=1\)
\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)
\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{8}{xy}+4xy\)
\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\)
Áp dụng BĐT AM - GM , ta có :
\(\Leftrightarrow\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\ge\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{29}{4xy}\)
\(\Leftrightarrow2P\ge\)\(\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2+\dfrac{29}{4xy}\ge\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{29}{\left(x+y\right)^2}\)
\(\Leftrightarrow2P\ge2+4+29=35\)
\(\Leftrightarrow P\ge\dfrac{35}{2}\)
\(\Rightarrow P_{Min}=\dfrac{35}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
Lời giải:
Xét biểu thức C
Ta có: \(C=x+\frac{4}{(x-y)(y+1)^2}=x-y+y+\frac{4}{(x-y)(y+1)^2}\)
\(C=(x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}-1\)
Áp dụng BĐT AM-GM ta có:
\((x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}\geq 4\sqrt[4]{(x-y).\frac{(y+1)^2}{4}.\frac{4}{(x-y)(y+1)^2}}=4\)
\(\Rightarrow C\geq 4-1=3\Leftrightarrow C_{\min}=3\)
Dấu bằng xảy ra khi \(x=2; y=1\)
Biểu thức D không có điều kiện gì thì không có min em nhé. Trừ khi \(D=x+\frac{1}{xy(x-y)}\)
\(\dfrac{x^3}{4\left(y+2\right)}+\dfrac{x\left(y+2\right)}{16}\ge\dfrac{x^2}{4}\) ; \(\dfrac{y^3}{4\left(x+2\right)}+\dfrac{y\left(x+2\right)}{16}\ge\dfrac{y^2}{4}\)
\(\Rightarrow Q+\dfrac{2xy+2x+2y}{16}\ge\dfrac{x^2+y^2}{4}\ge\dfrac{\left(x+y\right)^2}{8}\)
\(\Rightarrow Q\ge\dfrac{\left(x+y\right)^2-\left(x+y\right)}{8}-\dfrac{1}{2}=\dfrac{\left(x+y-4\right)^2+7\left(x+y\right)-16}{8}-\dfrac{1}{2}\)
\(\Rightarrow Q\ge\dfrac{7\left(x+y\right)-16}{8}-\dfrac{1}{2}\ge\dfrac{14\sqrt{xy}-16}{8}-\dfrac{1}{2}=1\)
\(Q_{min}=1\) khi \(x=y=2\)