Tìm các số nguyên tố x, y thoả mãn: 272. x = 11y + 29
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
29 tháng 6 2024
2/
$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$
$\Rightarrow n\vdots BCNN(65,125)$
$\Rightarrow n\vdots 1625$
$\Rightarrow n=1625k$ với $k$ tự nhiên.
$n=1625k=5^3.13.k$
Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại)
Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.
$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.
Vậy $n=1625p$ với $p$ là số nguyên tố.
HM
1
DX
0
NV
0
NA
0
DM
1
VT
1
\(11^y\equiv1\left(mod10\right)\Rightarrow11^y+29⋮10\)
\(\Rightarrow272x⋮10\Rightarrow272x⋮5\)
\(\Rightarrow x⋮5\Rightarrow x=5\) do x nguyên tố
Thay vào phương trình:
\(272.5=11^y+29\Rightarrow11^y=1331\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(5;3\right)\)