K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

<=> 4x2-27x+23=0

<=> 4x(x-1)-23(x+1)=0

<=> (x+1)  (4x-23)=0

<=> x+1=0          hoặc           <=> 4x-23=0

<=> x=0-1           hoặc           <=> 4x=0+23

<=> x=-1             hoặc           <=> 4x=23

                                              <=> x=23/4

14 tháng 2 2022

Answer:

\(4x^2-27x+23=0\)

\(\Rightarrow4x^2-4x-23x+23=0\)

\(\Rightarrow4x\left(x-1\right)-23\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(4x-23\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\4x-23=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{23}{4}\end{cases}}}\)

29 tháng 4 2019

\(4x^2-9x+23=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}+\frac{287}{16}=0\)

\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{-287}{16}\)( vô lý )

Vậy pt vô nghiệm

10 tháng 4 2022

ta có :Δ' = 22 - 2.4 = 4 - 8 = - 4 

==> pt trên vô nghiệm 

10 tháng 4 2022

cop chắc cosplay chứ copy thì ko có trong từ điển của tôi 

tôi k 7

31 tháng 3 2019

2x2 -4x=0

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy S = \(\left\{0;2\right\}\)

25 tháng 2 2019

x2+10x+25-4x(x+5)=0

⇔(x+5)2-4x(x+5)=0

⇔(x+5)(x+5-4x)=0

⇔(x+5)(5-3x)=0

\(\left\{{}\begin{matrix}x+5=0\\5-3x=0\end{matrix}\right.\Leftrightarrow\left\{{} }\left\{{}\begin{matrix}x=-5\\x=\dfrac{5}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$-4x^2-8x+11=0$

$\Leftrightarrow 4x^2+8x-11=0$

$\Leftrightarrow (2x)^2-2.2x.2+2^2-15=0$

$\Leftrightarrow (2x-2)^2-15=0$

$\Leftrightarrow (2x-2-\sqrt{15})(2x-2+\sqrt{15})=0$

\(\Rightarrow \left[\begin{matrix} 2x-2-\sqrt{15}=0\\ 2x-2+\sqrt{15}=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{2+\sqrt{15}}{2}\\ x=\frac{2-\sqrt{15}}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. 

PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$

$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)

$\Leftrightarrow (t-4)(t+6)=0$

$\Rightarrow t-4=0$ hoặc $t+6=0$

Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$

$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$

Nếu $t+6=0$

$\Leftrightarrow x^2+5x+6=0$

$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$

2.

PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$

$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)

$\Leftrightarrow (t-1)(t+3)=0$

$\Rightarrow t-1=0$ hoặc $t+3=0$

Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$

$\Rightarrow x=0$ hoặc $x=4$

Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$

31 tháng 7 2015

a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0

<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0

<=> (x - 3)(4x^2 - x + 6) = 0

xét 2 th

. x - 3 = 0 <=> x = 3

. 4x^2 - x + 6 = 0

<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0

<=> (4x + 1/2)^2 = -23/4

.... phần sau bạn tự làm nhé 

vậy pt trên có nghiệm là ...

. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự

31 tháng 7 2015

c) => x3 + 2x2 - 6x - 12x + 4x + 8 = 0

=> (x3 + 2x2)  -  (6x + 12x)  + (4x + 8) = 0

=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0

=> (x +2).(x2  - 6x + 4) = 0

=> x+ 2 = 0 hoặc x - 6x + 4 = 0

+) x+ 2 =0 => x = -2

+) x - 6x + 4 = 0 => x - 2.x.3  + 9  - 5 = 0 => (x -3)2  = 5

=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)

=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)

vậy...

 

30 tháng 7 2021

a, \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

b, \(27x^3+27x^2+9x+1=0\Leftrightarrow27x^3+1+27x^2+9x=0\)

\(\Leftrightarrow\left(3x+1\right)\left(9x^2-3x+1\right)+9x\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(9x^2+2>0\right)=0\Leftrightarrow x=-\frac{1}{3}\)

c, \(9x^2\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\Leftrightarrow x=-\frac{2}{3};x=\frac{2}{3};x=-1\)

d, \(\left(x+1\right)^3-25\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-25\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+6\right)=0\Leftrightarrow x=-1;x=-6;x=4\)