So sánh : A với B
A=5^5+2/5^5-1
B=5^5/5^5-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)
a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)
\(1^2=1\)
mà \(37-12\sqrt{10}< 0\)
nên \(2\sqrt{5}-3\sqrt{2}< 1\)
Ta có :
\(A=\frac{5^5+2}{5^5-1}=\frac{5^5-1}{5^5-1}+\frac{3}{5^5-1}\)
\(=1+\frac{3}{5^5-1}\)
\(B=\frac{5^5}{5^5-3}=\frac{5^5-3}{5^5-3}+\frac{3}{5^5-3}\)
\(=1+\frac{3}{5^5-3}\)
\(5^5-1>5^5-3\)
\(\Rightarrow\frac{3}{5^5-1}< \frac{3}{5^5-3}\)
\(\Rightarrow1+\frac{3}{3^5-1}< 1+\frac{3}{3^5-3}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
ta có
\(A=\frac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\frac{5^9}{1+5+5^2+...+5^8}=1+\frac{5^9}{1+5+5^2+...+5^8}\)
Vì \(5^9< 1+5+5^2+...+5^8\)
\(\Rightarrow\frac{5^9}{1+5+5^2+...+5^8}< 1\)
\(A=1+\frac{5^9}{1+5+5^2+...+5^8}< 1+1< 5\)
vậy A<5
a, \(\dfrac{a}{b}+\dfrac{2}{25}=1\Leftrightarrow\dfrac{a}{b}=1-\dfrac{2}{25}=\dfrac{23}{25}\)
b, \(\dfrac{a}{b}-\dfrac{5}{6}=1\Leftrightarrow\dfrac{a}{b}=1+\dfrac{5}{6}=\dfrac{11}{6}\)
\(A=1+5+5^2+5^3+...+5^{59}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).
\(A=1+5+5^2+5^3+...+5^{59}\)
\(5A=5+5^2+5^3+5^4+...+5^{60}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)
\(4A=5^{60}-1\)
\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).
a.
\(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}=\left(\dfrac{1}{\sqrt{5}}\right)^{-1,2}=\left(5^{-\dfrac{1}{2}}\right)^{-1,2}=5^{\left(-\dfrac{1}{2}\right).\left(-1,2\right)}=5^{0,6}>1\) do \(\left\{{}\begin{matrix}5>1\\0,6>0\end{matrix}\right.\)
b.
\(\left(\dfrac{1}{5}\right)^{\sqrt{2}}=\left(5^{-1}\right)^{\sqrt{2}}=5^{-\sqrt{2}}< 1\) do \(\left\{{}\begin{matrix}5>1\\-\sqrt{2}< 0\end{matrix}\right.\)
a: \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}=\left(\dfrac{1}{\sqrt{5}}\right)^{-\dfrac{6}{5}}=\left(1:\dfrac{1}{\sqrt{5}}\right)^{-\dfrac{5}{6}}=\left(\sqrt{5}\right)^{-\dfrac{5}{6}}\)
\(1=\left(\sqrt{5}\right)^0\)
mà -5/6<0 và \(\sqrt{5}>1\)
nên \(\left(\dfrac{\sqrt{5}}{5}\right)^{-1,2}>1\)
b: \(0< \dfrac{1}{5}< 1\)
=>\(\left(\dfrac{1}{5}\right)^{\sqrt{2}}< \left(\dfrac{1}{5}\right)^0=1\)
\(A=\frac{5^5+2}{5^5-2}>\frac{5^5}{5^5-1}>\frac{5^5}{5^5-3}=B\Rightarrow A>B\)
lý Kì Anh Bạn nhầm rồi nhé :)
\(5^5-1>5^5-3\)nên \(\frac{5^5}{5^5-1}< \frac{5^5}{5^5-3}\)