chung minh rang :
1/3^2+1/4^2+1/5^2+1/6^2+...+1/100^2<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
Ta có
\(P< \frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{99.100}\)
\(\Rightarrow P< \frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow P< \frac{1}{4}\left(1\right)\)
\(p>\frac{1}{5^2}+\frac{1}{6.7}+....+\frac{1}{100.101}\)
\(P>\frac{1}{5^2}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(P>\frac{1}{6}+\frac{1}{25}-\frac{1}{101}\)
Ta thấy
\(\frac{1}{25}>\frac{1}{101}\Rightarrow\frac{1}{25}-\frac{1}{101}>0\)
Đặt \(M=\frac{1}{25}-\frac{1}{101}\)
\(\Rightarrow P>\frac{1}{6}+M>\frac{1}{6}\)
\(\Rightarrow P>\frac{1}{6}\left(2\right)\)
Tự (1) và (2)
\(\Rightarrow\frac{1}{6}< p< \frac{1}{4}\)
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây
\(P=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
- Có: \(P>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
=> \(P>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(P>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
=> \(P>\frac{1}{6}\)(1)
- Có: \(P< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
=> \(P< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
=> \(P< \frac{1}{4}-\frac{1}{100}< 14\)(2)
Từ (1) và (2)
=> \(\frac{1}{6}< P< 14\)(Nếu đề là 1/6 < P < 1/4 thì thay số 14 bằng 1/4 vẫn đúng nhé)
=> Đpcm
Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\) ( đpcm )
Chúc bạn học tốt ~
Đặt \(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}\)
Ta thấy:
\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3}< \dfrac{1}{2.3};...;\dfrac{1}{100!}=\dfrac{1}{1.2...100}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được:
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+\dfrac{1}{100!}\)
\(=\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+\left(\dfrac{1}{3!}-\dfrac{1}{4!}\right)+...+\left(\dfrac{1}{99!}-\dfrac{1}{100!}\right)\)
\(=1-\dfrac{1}{100!}< 1\)