A=31x32x33x....x59x60 . Chứng minh A chia hết cho 230
Giúp mình với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Lời giải:
Ta có:
$10\equiv -1\pmod {11}$
$\Rightarrow 10^{2022}\equiv (-1)^{2022}\equiv 1\pmod {11}$
$\Rightarrow A=10^{2022}-1\equiv 1-1\equiv 0\pmod {11}$
Vậy $A\vdots 11$
ok
A= 10^2022-1
Ta có thể thấy 10^2022=100000000...........0000000000
10000000.......0000000000-1 thì lúc nnày tổng bằng
9999999999999999........................999999999999999999999
mà 99999999999999999999999....................9999999999999999999chia hết cho 11 nên tổng này chia hết cho 11
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
A=1+2+22+...+22009 gồm 2010 số
A=(1+2+22)+(23+24+25)+...+(22007+22008+22009)
A=7.1+7.23+...+7.22007(. là dấu nhân nhaaa)
A=7.(1+23+...+22007)⋮7
Vậy A⋮7
tích đúng hộ mikkkkk
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57
Đặt A = a + 2b; B = 10a + b
=> 2B = 2 ( 10a + b ) = 20a + 2b
Xét 2B - A = 20a + 2b - a - 2b = 19a ⋮ 19
=> 2B - A ⋮ 19
Mặt khác A ⋮ 19
=> 2B ⋮ 19
=> B ⋮ 19 ( đpcm )
Sửa đề: A=4+4^2+4^3+...+4^23+4^24
A=4(1+4+4^2)+...+4^22(1+4+4^2)
=21(4+...+4^22) chia hết cho 21
A=(4+4^2)+4^2(4+4^2)+...+4^22(4+4^2)
=20(1+4^2+...+4^22) chia hết cho 20
A= 31.32.33...60
A= (1.2.3.4...60)/(1.2.3.4..30)
A= (2.4.6...60).(1.3.5..59)/(1.2.3.4...30)
A=2^30(1.2.3...30).(1.3.5....59)/(1.2.3.4..30)
A=2^30.(1.3.5...59)
=>A chia hết cho 2^30(đpcm)
kết bn vs mình mình giải cho