cho các số a,b,c lớn hơn 1 và thõa mãn a+b+c=4.chứng minh rằng (a^2+1)(b^2+1)(c^2+1)<24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)
Vì \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)
Do \(a+b+c=0;-1< a,b,c< 1\) nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)
\(\Rightarrow a^2+b^2+c^2< a+b-z\)
\(\Rightarrow a^2+b^2+c^2< -2z< 2\)
\(\Rightarrowđpcm\)
Ta có:\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{cases}\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\Rightarrow1\ge ab+bc+ca}\)(1)
Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca\le1+2=3\)
\(\Rightarrow\left(a+b+c\right)^2\le3\Rightarrow a+b+c\le\sqrt{3}\)(2)
Từ (1) và (2) suy ra \(a+b+c+ab+bc+ca\le1+\sqrt{3}\)
\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c