Có bao nhiêu số nguyên x thoả mãn (x+3)(x+5)>=0
A. 1 số
B. Vô số
C. 3 số
D. Không có số nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2). (x+4) <0
TH1: (x+2) <0 và (x+4) >0
<=> x< -2 và x> -4
<=>x=3
TH2: (x+2) > 0 và (x+4)<0
<=> x> -2 và x< -4
Loại
=> Chỉ có 1 số thoả mãn là -3
Ta có \(\left(x+3\right)\left(x+5\right)\ge0\)
Trường hợp 1: \(\left\{{}\begin{matrix}x+3\ge0\\x+5\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\ge-5\end{matrix}\right.\)\(\Leftrightarrow x\ge-3\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+3\le0\\x+5\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x\le-5\end{matrix}\right.\)\(\Leftrightarrow x\le-5\)
Vậy để thỏa mãn \(\left(x+3\right)\left(x+5\right)\ge0\) thì \(x\ge-3\) hoặc \(x\le-5\)
Suy ra có vô số số nguyên x
Đáp án B
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\3^x-9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge2\)
BPT tương đương:
\(\left[{}\begin{matrix}3^x-9=0\\log_3x-y\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\log_3x\le y\end{matrix}\right.\)
Do \(x\ge2\) mà ko có quá \(2186\) số nguyên x thỏa mãn \(\Rightarrow x\le2187\)
\(\Rightarrow3^y\le2187\Rightarrow y\le7\)
Có 7 số nguyên dương y thỏa mãn
\(\Rightarrow-3< x< 2\\ \Rightarrow x\in\left\{-2;-1;0;1\right\}\\ \Rightarrow B\)
tk
Ta có (x+3)(x+5)≥0(x+3)(x+5)≥0
Trường hợp 1: {x+3≥0x+5≥0{x+3≥0x+5≥0⇔{x≥−3x≥−5⇔{x≥−3x≥−5⇔x≥−3⇔x≥−3
Trường hợp 2: {x+3≤0x+5≤0{x+3≤0x+5≤0⇔{x≤−3x≤−5⇔{x≤−3x≤−5⇔x≤−5⇔x≤−5
Vậy để thỏa mãn (x+3)(x+5)≥0(x+3)(x+5)≥0 thì x≥−3x≥−3 hoặc x≤−5x≤−5
Suy ra có vô số số nguyên x
Đáp án B
Chọn B