K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

29 tháng 3 2017

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}+\frac{1}{2017^2}\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}+\frac{1}{2017.2017}\)

Ta thấy \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{2016.2016}< \frac{1}{2016.2017};\frac{1}{2017.2017}< \frac{1}{2017.2018}\)

Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}+\frac{1}{2017.2018}\)

Nên \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-...+\frac{1}{2017}-\frac{1}{2018}\)

Khi đó \(A< 1-\frac{1}{2018}< 1\)nên A < 1

Suy ra A - 1 < 0

Vậy A - 1 < 0

20 tháng 9 2016

\(\frac{1}{3}A=\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2017}\)

\(A-\frac{1}{3}A=\frac{1}{3}-\left(\frac{1}{3}\right)^{2017}\)

\(A=\frac{2}{3}\left[\frac{1}{3}-\left(\frac{1}{3}\right)^{2017}\right]\)

\(A=\frac{2}{9}-\frac{2}{3}.\left(\frac{1}{3}\right)^{2017}\)

\(\frac{2}{9}< \frac{1}{2};\frac{2}{3}.\left(\frac{1}{3}\right)^{2017}>0\Rightarrow A< \frac{1}{2}\)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

16 tháng 11 2021

4333344

21 tháng 1 2022

?reeeeeeeeeeee