K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

a) ta có \(-x^2\ge0\) với mọi \(x\in R\)

=>\(-x^2\ge0-2>0\)

vậy đa thức \(-x^2+x-2\) không có nghiệm

b)ta có \(x^2-4x+5\) với mọi \(x\in R\)

=>\(x^2\ge0+5>0\)

vậy đa thức \(x^2-4x+5\) không có nghiêm.

30 tháng 4 2016

a) -x2+x-2 = -(x-1/2)+1/4 -2 <0 luôn âm

nên vo nghiem

b) x2 -4x+5 =( x-2)2 +1 >0 luôn duong

nên vn

mk giai k bao h sai

11 tháng 5 2016

D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0

vậy D(x) vô nghiệm

11 tháng 5 2016

Dùng hằng thức (a-b)2=a2-2ab+b2 ta có

D(x)= X2-4x+5=x2-2x2+22+1

                     =(x-2)2+1

Vì (x-2)2>-1 suy ra (x-2)2+1>0

Vậy đa thức D(x)=x2-4x+5 không có nghiệm

4 tháng 4 2022

Ta có: 

\(\left(x-4\right)^2\ge0\)

\(\left(x+5\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn

=> đa thức vô nghiệm

4 tháng 4 2022

good job

tks you nhó 

8 tháng 5 2016

x2+5x+4=(x2+x)+(4x+4)=(x+4)(x+1)=0

Đa thức đó luôn có 2 nghiệm phân biệt -4 và -1

9 tháng 5 2016

mk có cách khác:

vì x2 lớn hơn hoặc bằng 0

   5x lớn hơn hoặc bằng 0

=> x2 + 4 + 5x lớn hơn hoặc bằng 4 > 0

=> đa thức trên vô nghiệm

theo mk bn nên để số 4 ra ngoài vì nó là số tự do mà!!

3 tháng 8 2016

Nếu đa thức trên có nghiệm là n

<=>(n-4)2+(n+5)2=0

<=>(n-4)2=0 và (n+5)2=0

<=>n-4=0 và n+5=0

<=>n=4 và n=-5 (vô lý)

Vậy đa thức trên vô nghiệm

9 tháng 5 2018

k đúng cho mình đi mình trả lời cho, bài này dễ ợt.

9 tháng 5 2018

cho - x2 - 4x- 20 = 0

=> - [ (x2 + 2x * 2 + 22) + 16] = 0

=> - [ (x + 2 )2 + 16 ] =0

=> - (x + 2 )2 - 16 = 0

mà (x + 2 )2  >= 0

=>  - (x + 2 )2  <  hoặc = 0

=>  - (x + 2 )2 - 16 < 0

Hay  - x2 - 4x - 20 < 0

=> Đa thức  - x2 - 4x- 20 ko có nghiệm

Vậy .....

1 tháng 6 2020

a) K(x) = -4x2 - 2

\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)

\(-2< 0\)

=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )

b) Q(x) = 2(x+1)+ 7

\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)

7 > 0

=> 2(x+1)+ 7 > 0 => Vô nghiệm ( đpcm )

c) cái này mình chịu nha TvT

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

22 tháng 4 2017

Đặt f(x)= \(x^2+4x+5\) \(=x^2+2x+2x+4+1\)

\(=\left(x^2+2x\right)+\left(2x+4\right)+1\)

\(=x\left(x+2\right)+2\left(x+2\right)+1\)

\(=\left(x+2\right)\left(x+2\right)+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)

\(\Rightarrow f\left(x\right)>0\forall x\)

=> Đa thức f(x) trên vô nghiệm

26 tháng 4 2016

Đề hình như sai bạn à

 

14 tháng 4 2019

Ta có: (x-3)2 \(\ge0\forall x\)

\(\Rightarrow x^2\ge9\forall x\)

\(\Rightarrow x^2+\left(x-3\right)^2\ge9\forall x\)

Vậy đa thức trên vô nghiệm.