So sánh hai phân số \(\frac{5}{20}\) và \(\frac{2020}{2025}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2019}{2020}=1-\frac{1}{2020}\)
\(\frac{2020}{2021}=1-\frac{1}{2021}\)
Vì \(\frac{1}{2020}>\frac{1}{2021}\) nên \(1-\frac{1}{2020}< 1-\frac{1}{2021}\)
\(\Rightarrow\frac{2019}{2020}< \frac{2020}{2021}\)
Ta có : \(\frac{672}{2017}< \frac{673}{2017}< \frac{673}{2020}\)
\(\frac{\Rightarrow672}{2017}< \frac{673}{2020}\)
1.So sánh phân số: \(\frac{2019}{2020}\) và \(\frac{2020}{2021}\)
Ta có : \(\frac{2019}{2020}\) + \(\frac{1}{2020}\) = \(\frac{2020}{2020}\) = 1
\(\frac{2020}{2021}\) + \(\frac{1}{2021}\) = \(\frac{2021}{2021}\) = 1
Mà \(\frac{1}{2020}\) > \(\frac{1}{2021}\) nên \(\frac{2019}{2020}\) < \(\frac{2020}{2021}\)
Mình chỉ biết mỗi câu này thôi, mình chắc chắn với bạn là câu này đúng không sai đâu
~ Học tốt ~
a) Ta có: \( - 2 = \frac{{ - 2}}{1} = \frac{{ - 40}}{{20}}\)
\(\frac{{ - 11}}{5} = \frac{{ - 44}}{{20}} < \frac{{ - 40}}{{20}}\) nên \(\frac{{ - 11}}{5} < -2\).
\(\frac{{ - 7}}{4} = \frac{{ - 7.5}}{{4.5}} = \frac{{ - 35}}{{20}} > \frac{{ - 40}}{{20}}\) nên \(\frac{{ - 7}}{4} > -2\)
Vậy \(\frac{{ - 11}}{5} < \frac{{ - 7}}{4}\).
b) Ta có: \(\frac{{2020}}{{ - 2021}} = \frac{{ - 2020}}{{2021}} > \frac{{ - 2022}}{{2021}}\)
Vậy \(\frac{{2020}}{{ - 2021}} > \frac{{ - 2022}}{{2021}}\)
a) \(\frac{{ - 3}}{8} = \frac{{ - 3.3}}{{8.3}} = \frac{{ - 9}}{{24}}\)
Vì -9 < -5 nên \(\frac{{ - 9}}{{24}} < \frac{{ - 5}}{{24}}\)
Vậy \(\frac{{ - 3}}{8} < \frac{{ - 5}}{{24}}\).
b) Cách 1: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5}; \frac{3}{{ - 5}} = \frac{-3}{{5}}\)
Vì 2 > -3 nên \(\frac{2}{5} > \frac{-3}{{5}}\)
Vậy \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
Cách 2: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5} > 0\) mà \(\frac{3}{{ - 5}} < 0\)
\(\Rightarrow\) \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}} = \frac{3}{{10}} = \frac{{3.2}}{{10.2}} = \frac{6}{{20}}\)
\(\frac{{ - 7}}{{ - 20}} = \frac{7}{{20}}\)
Vì 6 < 7 nên \(\frac{6}{{20}} < \frac{7}{{20}}\) nên \(\frac{{ - 3}}{{ - 10}} < \frac{{ - 7}}{{ - 20}}\).
d) \(\frac{{ - 5}}{4} = \frac{{ - 5.5}}{{4.5}} = \frac{{ - 25}}{{20}}; \frac{{ 23}}{{-20}}=\frac{{-23}}{{20}} \)
Vì -25 < -23 nên \( \frac{{ - 25}}{{20}} < \frac{{-23}}{{20}} \)
Vậy \(\frac{{ - 5}}{4} < \frac{{23}}{{ - 20}}\).
ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)
\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F
E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1
E=1+1/2019+1
E=2/2020
E=1/1010
F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1
F= 1+1/2019+1
F=2/2020
F=1/1010
từ đó ta có E=F(=1/1010)
Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\Rightarrow A< B\)
Vậy A < B
a) Ta có:
\(\frac{4}{9}< 1;\frac{5}{4}>1\)
Vì \(\frac{4}{9}< 1\)mà \(\frac{5}{4}>1\)nên \(\frac{4}{9}< \frac{5}{4}\)
Tương tự với \(\frac{2}{7}\) và \(\frac{7}{2}\)