Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2(n-1)-5(n-2)>0`
`<=>2n-2-5n+10>0`
`<=>8-3n>0`
`<=>3n<8`
`<=>n<8/3`
Mà `n in NN`
`=>n in {0,1,2}`
\(2\left(n-1\right)-5\left(n-2\right)>0\)
<=> 2n -2 - 5n + 10 > 0
<=> -3n + 8 > 0
<=> -3n > - 8
<=> \(n< \dfrac{8}{3}\)
Mà n là số tự nhiên
<=> n \(\in\left\{0;1;2\right\}\)
a: =>4n+4-2 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow\left(a+2;b-1\right)\in\left\{\left(1;9\right);\left(9;1\right);\left(-1;-9\right);\left(-9;-1\right);\left(3;3\right);\left(-3;-3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(-1;10\right);\left(7;2\right);\left(-3;-8\right);\left(-11;0\right);\left(1;4\right);\left(-5;-2\right)\right\}\)
\(\Rightarrow3\left(n+1\right)+11⋮n+1\\ \Rightarrow11⋮n+1\\ \Rightarrow n+1\inƯ\left(11\right)=\left\{1;11\right\}\\ \Rightarrow n\in\left\{0;10\right\}\)
`@` `\text {Ans}`
`\downarrow`
\(\left(2\cdot x+2\right)^2=64\)
`\Rightarrow`\(\left(2x+2\right)^2=\left(\pm8\right)^2\)
`\Rightarrow`\(\left[{}\begin{matrix}2x+2=8\\2x+2=-8\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=8+2\\2x=-8+2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=10\\2x=-6\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=10\div2\\x=-6\div2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
`@` `\text {Kaizuu lv uuu}`
Để 4n - 1 chai hết cho 7
Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}
Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}
6 ⋮ n -2
n- 2 ϵƯ(6) = { -6; -3; -2; -1; 1; 2; 3; 6}
n - 2 = -6 => n = -6 + 2 => n = -4 (loại)
n- 2 = - 3 => n = 2 - 3 => n = -1 (loại)
n- 2 = -2 => n = 2 - 2 => n = 0 (thỏa mãn)
n - 2 = -1 => n = 2 - 1 => n = 1 (thỏa mãn)
n - 2 = 1 => n = 2 + 1 => n = 3 (thỏa mãn)
n - 2 = 2 => n = 2 + 2 => n = 4 (thỏa mãn)
n - 2 = 3 => n = 2 + 3 => n = 5 (thỏa mãn)
n - 2 = 6 => n = 3 + 6 => n = 9 (thỏa mãn)
kết luận n ϵ { 1; 3; 4; 5; 6}