K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

undefined

5 tháng 2 2022

Kudo Shinichi CTV, bn ơi đề bài cho a>1 mà??

24 tháng 8 2023

a)

ĐK: \(a>0\)

\(P=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\\ =\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\\ =a+\sqrt{a}-2\sqrt{a}-1+1\\ =a-\sqrt{a}\)

b)

\(a>1\Rightarrow\sqrt{a}-1>0\Rightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\)

\(\Rightarrow\left|P\right|=P\)

24 tháng 8 2023

Cho tớ hỏi sao lại khử hết mẫu vậy cậu?

6 tháng 2 2022

a) \(P=\dfrac{\sqrt{a}\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(P=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(P=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(P=a+\sqrt{a}-2\sqrt{a}-1+1\)

\(P=a-\sqrt{a}\)

b) Với a > 1 thì \(a>\sqrt{a}\) , do đó \(P=a-\sqrt{a}>0\), suy ra \(\left|P\right|=P\)

c) \(A=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy A nhỏ nhất bằng \(-\dfrac{1}{4}\) khi cà chỉ khi \(\sqrt{a}=\dfrac{1}{2}\) hay \(a=\dfrac{1}{4}\)

a: \(P=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}\)

b: a>1 nên P>0

\(\Leftrightarrow P=\left|P\right|\)

25 tháng 4 2021

Rút gọn ta được:

M=√a−1/√a

Viết M ở dạng M=1−1/√a

suy ra M<1

29 tháng 4 2021

Với \(x>0;x\ne1\)

\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1 

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

1 tháng 10 2017

Có đúng không đấy

18 tháng 5 2021

a,Với \(a>0;a\ne1\)

 \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)

b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)

Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)

19 tháng 11 2017

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

19 tháng 11 2017

còn so sánh với 1 nữa, Bạn làm tiếp đi