K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

\(M=a+\dfrac{1}{a}=\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{1}{a}\)

BBĐT AM-GM

\(=>\dfrac{a}{4}+\dfrac{1}{a}\ge2\sqrt{\dfrac{1}{4}}=1\)

\(=>M=\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{1}{a}\ge1+\dfrac{3.2}{4}=\dfrac{5}{2}\)

dấu"=" xảy ra<=>\(a=2\)

cánh 2: \(M=a+\dfrac{1}{a}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\) dấu"=" xảy ra tương tự

 

18 tháng 7 2021

nhầm không có cách 2 đâu nhé

NV
3 tháng 10 2021

\(cos\left(2-ab\right)-cos\left(a+b\right)=a+b+ab-2\)

\(\Leftrightarrow cos\left(2-ab\right)+2-ab=cos\left(a+b\right)+a+b\)

Xét hàm \(f\left(x\right)=cosx+x\)

\(f'\left(x\right)=-sinx+1\ge0;\forall x\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow2-ab=a+b\)

\(\Rightarrow2-a=b\left(a+1\right)\Rightarrow b=\dfrac{2-a}{a+1}=\dfrac{3}{a+1}-1\)

\(\Rightarrow P=a+\dfrac{6}{a+1}-2=a+1+\dfrac{6}{a+1}-3\ge2\sqrt{\dfrac{6\left(a+1\right)}{a+1}}-3=2\sqrt{6}-3\)

NV
1 tháng 7 2019

\(P=a+\frac{1}{a}=\frac{a}{2005^2}+\frac{1}{a}+\left(1-\frac{1}{2005^2}\right)a\)

\(P\ge2\sqrt{\frac{a}{2005^2}.\frac{1}{a}}+\left(1-\frac{1}{2005^2}\right).2005=\frac{1}{2005}+2005\)

Dấu "=" xảy ra khi \(a=2005\)

\(P=a+b+\frac{1}{2a}+\frac{2}{b}=\frac{a}{2}+\frac{1}{2a}+\frac{b}{2}+\frac{2}{b}+\frac{1}{2}\left(a+b\right)\)

\(P\ge2\sqrt{\frac{a}{2}.\frac{1}{2a}}+2\sqrt{\frac{b}{2}.\frac{2}{b}}+\frac{1}{2}.3=\frac{9}{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Câu cuối đề sai, bạn nhìn hai số hạng cuối cùng

NV
7 tháng 11 2021

\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)

Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)

\(\Rightarrow2⋮2n-1\)

\(\Rightarrow2n-1=Ư\left(2\right)\)

Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)

\(\Rightarrow n=\left\{0;1\right\}\)

2.

\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)

\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)

\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)

20 tháng 4 2017

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)

Y
9 tháng 5 2019

\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)

\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)

\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)

A = 3 \(\Leftrightarrow a=b=c=1\)

Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)

9 tháng 5 2019

\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)

\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)

\("="\Leftrightarrow a=b=c=1\)

19 tháng 7 2018

Điều đầu tiên ta chứng minh được bất đẳng thức sau : \(\sqrt{\dfrac{a^2}{a-1}}\ge2\)

Ta có :

\(\sqrt{\dfrac{a^2}{a-1}}\ge2\)

\(\Leftrightarrow\dfrac{a^2}{a-1}\ge4\)

\(\Leftrightarrow a^2\ge4a-4\)

\(\Leftrightarrow a^2-4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\ge0\) ( Luôn đúng )

Tương tự ta vẫn có : \(\sqrt{\dfrac{b^2}{b-1}}\ge2\)

Áp dụng BĐT Cô - Si cho hai số không âm ta có :

\(M=\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge2\sqrt{\dfrac{a^2b^2}{\left(a-1\right)\left(b-1\right)}}=2\sqrt{\dfrac{a^2}{a-1}}.\sqrt{\dfrac{b^2}{b-1}}=2.2.2=8\)

Vậy GTNN của M là 8 khi \(a=b=2\)

19 tháng 7 2018

\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge2\sqrt{\dfrac{a^2b^2}{\left(a-1\right)\left(b-1\right)}}=\dfrac{2ab}{\sqrt{\left(a-1\right)\left(b-1\right)}}\ge\dfrac{2ab}{\dfrac{a-1+1}{2}.\dfrac{b-1+1}{2}}=8\)

Dấu "=" xảy ra khi \(a=b=2\)

NV
12 tháng 4 2020

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

NV
12 tháng 4 2020

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)