\(cho\) \(A=1+3+3^2+...+3^{2008}\). Tính 2A - 32009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
Ta có:
\(A=1+3+3^2+..+3^{2008}\)
\(\Rightarrow3A=\left(1+3+3^2+...+3^{2008}\right).3\)
\(=3+3^2+3^3...+3^{2009}\)
Vì \(2A=3A-A\)nên ta có:
\(2A=\left(3+3^2+3^3+...+3^{2009}\right)-\left(1+3+3^2+..+3^{2008}\right)\)
\(=3^{2009}-1\)
\(\Rightarrow2A-3^{2009}=3^{2009}-1-3^{2009}\)
\(=\left(3^{2009}-3^{2009}\right)-1\)
\(=0-1\)
\(=-1\)
Vậy \(2A-3^{2009}=-1\)
Sửa \(A=3^0+3^1+3^2+......+3^{2007}\)
\(3A=3^1+3^2+......+3^{2008}\)
\(3A-A=\left(3^1+3^2+.....+3^{2008}\right)-\left(3^0+3^1+....+3^{2007}\right)\)
\(2A=3^{2008}-1\)
Có : \(2A=3^{2008}-1\)
\(B=3^{2008}\)
=> 2A , B là 2 số ........................
Sai đề rồi bạn nhé
Mình nghĩ B = \(3^{2009}\)cơ
Đây nhé
2A = 3A - A = \(3\left(3^0+3^1+3^2+....+3^{2008}\right)\)-\(\left(3^0+3^1+3^2+....+3^{2008}\right)\)
=\(3+3^2+3^3+.....+3^{2009}\)\(-3^0-3-3^2-....-3^{2008}\)
=\(3^{2009}-3^0\)
=\(3^{2009}-1\)=> 2A = \(3^{2009}-1\)
Vậy 2A ít hơn B 1 đơn vị ( vì B = \(3^{2009}\)nhé)
Vậy 2A và B là 2 số tự nhiên liên tiếp
Ta có: A = 30 + 31 + 32 + 33 +...+ 32008
Nhân hai vế cho 3, ta có:
3A = 31 + 32 + 33 + 34+...+ 32009
Trừ 3A cho A, ta được:
3A - A= ( 31 + 32 + 33 +34+...+ 32009) - ( 30 + 31 +32 + 33 +....+ 32008)
2A = 31 + 32 + 33 + 34 +... + 32009 - 30 - 31 - 32 - 33 -...- 32008
2A = 1 + 32009
Mà B = 32009
Vậy 2A và B là hai số tự nhiên liên tiếp ( hơn kém nhau 1 đơn vị)
\(A=3+3^2+...+3^{2008}\)
\(3A=3.\left(3+3^2+...+3^{2008}\right)\)
\(3A-A=\left(3^2+3^3+...+3^{2009}\right)-\left(3+3^2+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3^{2009}-3+3\)
\(2A+3=3^{2009}\)
Vì \(2A+3=3^x\)hay \(3^{2009}=3^x\)
\(\Rightarrow x=2009\)
\(A=3+3^2+...+3^{2008}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2009}\)
\(\Rightarrow3A-A=3^{2009}-3\)
\(\Rightarrow2A+3=3^{2009}\)
Vậy n = 2009