K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2>=\dfrac{1}{4}\)

\(y^2>=\dfrac{1}{4}\)

Do đó: \(x^2+y^2>=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

2 tháng 2 2022

\(x\ge\dfrac{1}{2};y\ge\dfrac{1}{2}\)=>\(xy\ge\dfrac{1}{4}\)=>\(2xy\ge\dfrac{1}{2}\).

\(x+y\ge\dfrac{1}{2}+\dfrac{1}{2}=1\)

=>\(\left(x+y\right)^2\ge1\)

=>\(x^2+2xy+y^2\ge1\)

=>\(x^2+y^2\ge1-2xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\)

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

29 tháng 5 2016

Cách 1:Ta có: \(2\left(1+a^2\right)\ge\left(1+a\right)^2\)

\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{1}{\left[2\left(1+a^2\right)\right]}\)

\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\)

mà: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+x^2y^2+x^2+y^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{\left[2.\left(1+xy\right)+\left(x-y\right)^2\right]}{\left(1+xy\right)^2+\left(x-y\right)^2}\)

\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge2.\frac{1+xy}{\left(1+xy\right)^2}\)

\(\Rightarrow\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\ge\frac{1}{1+xy}\)

\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)

29 tháng 5 2016

Nhưng hình như đề fai là 2/1+xy thì fai

13 tháng 9 2018

a) Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )

b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2

c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)

nên \(x^2+y^2+z^2\ge0\)

\(\Rightarrow x^2+y^2+z^2+3\ge3\)

13 tháng 9 2018

Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)