Đa thức: x4-4.x2. Có bao nhiêu nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
![](https://rs.olm.vn/images/avt/0.png?1311)
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mũ chẵn lớn hơn bằng 0 mà cộng thêm 1 số không âm nữa nên các đa thức trên luôn lớn hơn 0
a: Vì \(x^2+1>0\forall x\)
nên đa thức này vô nghiệm
b: \(2x^2+1>0\forall x\)
nên đa thức này vô nghiệm
c: \(x^4+2>0\forall x\)
nên đa thức này vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có x4+2x2+1=(x2+1)2
Vì x^2>=0 với mọi x
Suy ra (x2+1)2>=(0+1)2=1>0
Vậy đa thức M vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Đặt x 2 = t (t ≥ 0) ta được phương trình t 2 - 6t - 7 = 0 (*)
Nhận thấy a - b + c = 1 + 6 - 7 = 0 nên phương trình (*) có hai nghiệm
t 1 = -1(L); t 2 = 7(N)
Với t = 7 ta có x 2 = 7 ⇔ x = ± 7
Vậy phương trình đã cho có hai nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(6x+3=0\Leftrightarrow6x=-3\Leftrightarrow x=-\dfrac{1}{2}\)
2) \(-5x-7=0\Leftrightarrow-5x=7\Leftrightarrow x=-\dfrac{7}{5}\)
3) \(\left(3x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=5\end{matrix}\right.\)
4) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
6) \(x^4+8=0\)( vô lý do \(x^4+8\ge8>0\))
Vậy \(S=\varnothing\)