K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

\(\dfrac{4}{x}+\dfrac{2}{y}=1\) ⇔ \(\dfrac{4}{x}=1-\dfrac{2}{y}\) ⇔\(x=\dfrac{4}{\dfrac{y-2}{y}}=\dfrac{4y}{y-2}\)

- Vì x, y nguyên nên 4y ⋮ y-2 

⇔4(y-2)+8 ⋮ y-2

⇔8 ⋮ y-2

⇔y-2∈{1;-1;2;-2;4;-4;8;-8}

⇔y∈{3;1;4;0;6;-2;10;-6}

=>x∈{12;-4;8;0;6;2;5;3}

NV
2 tháng 4 2023

\(x+\dfrac{1}{x}+y+\dfrac{1}{y}=4\)

\(\Rightarrow x+y+\dfrac{x+y}{xy}=4\)

\(\Rightarrow\left(x+y\right)\left(xy+1\right)=4xy\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u;v\in Z\) và \(u^2\ge4v\)\(v\ne0\)

\(\Rightarrow u\left(v+1\right)=4v\)

\(\Rightarrow u=\dfrac{4v}{v+1}=4-\dfrac{4}{v+1}\)

\(\Rightarrow v+1=Ư\left(4\right)\Rightarrow v+1=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow v=\left\{-5;-3;-2;1;3\right\}\)

\(\Rightarrow u=\left\{5;6;8;2;3\right\}\)

Loại cặp \(\left(u;v\right)=\left(3;3\right)\) không thỏa mãn \(u^2\ge4v\)

Ta được \(\left(u;v\right)=\left(5;-5\right);\left(6;-3\right);\left(8;-2\right);\left(2;1\right)\)

TH1: \(\left\{{}\begin{matrix}x+y=5\\xy=-5\end{matrix}\right.\) không tồn tại x;y nguyên thỏa mãn

TH2: \(\left\{{}\begin{matrix}x+y=6\\xy=-3\end{matrix}\right.\) ko tồn tại x;y nguyên thỏa mãn

TH3: \(\left\{{}\begin{matrix}x+y=8\\xy=-2\end{matrix}\right.\) không tồn tại x;y nguyên thỏa mãn

TH4: \(\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Rightarrow x=y=1\)

Vậy pt có đúng 1 cặp nghiệm nguyên \(\left(x;y\right)=\left(1;1\right)\)

11 tháng 7 2023

Các bn giải theo phương pháp sử dụng đk có nghiệm của phương trình bậc hai giúp mk ạ!

11 tháng 7 2023

mình có 1 cách khác nữa:
 vì y ∈ Z nên \(\dfrac{x^2-x+1}{x^2+x+1}\) ∈ Z 
=>x2-x+1⋮x2+x+1=> x2+x+1 -2x ⋮x2+x+1
=>2x⋮x2+x+1 (1)
Xét hiệu (x2+x+1)-2x=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0
=>x2+x+1 > 2x (2)
Từ (1) và (2) kết hợp với 2x và x2+x+1 ∈ Z 
=> 2x =0 => x =0 => y=1 
Vậy phương trình có nghiệm (x,y) là (0,1)

25 tháng 5 2022

\(\dfrac{5}{x}-\dfrac{y}{4}=\dfrac{1}{12}\Leftrightarrow\dfrac{20-xy}{4x}=\dfrac{1}{12}\Leftrightarrow240-12xy=4x\Leftrightarrow240-12xy-4x=0\Leftrightarrow60-3xy-x=0\Leftrightarrow-3xy-x=-60\Leftrightarrow-x\left(3y+1\right)=60\)Đến đây do x,y nguyên nên bạn lập bảng xét ước nhá, lưu ý 3y + 1 chia 3 dư 1 để bớt trường hợp xét nhá.

9 tháng 1 2021

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).

 

18 tháng 3 2022

1, ĐKXĐ:\(x\ne2,y\ne1\)

Đặt `1/(x-2)` = a, `1/(y-1)` = b

\(Hệ.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\\b=\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\3y-3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\)\(2,\Delta'=\left[-\left(m+1\right)\right]^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-x_1x_2=3\\ \Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=3\\ \Leftrightarrow\left(2m+2\right)^2-5.4m-3=0\\ \Leftrightarrow4m^2+8m+4-20m-3=0\\ \Leftrightarrow4m^2-12m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

6 tháng 4 2021

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

4 tháng 1 2022

Buồn á :((

Bài này hóng từ qua nữa :((

 

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)