K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

d) \(x^2-2x+1=0\)

⇔ \(\left(x-1\right)^2=0\)

⇒ \(x=1\)

h) \(x^2+6x-16=0\)

⇔ \(\left(x+3\right)^2=25\)

⇒ \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

27 tháng 1 2022

mình giải theo cách lớp 9 bạn nhé 

d, \(x^2-2x+1=0\)

ta có : a + b + c = 1 - 2 + 1 = 0 

pt có 2 nghiệm \(x=1;x=\dfrac{c}{a}=1\)

Vậy x = 1 

h, \(x^2+6x-16=0\)

\(\Delta'=9-\left(-16\right)=25>0\)

Vậy pt luôn có 2 ngiệm pb 

\(x_1=-3-5=-8;x_2=-3+5=2\)

4 tháng 2 2022

lớp 8 có pt bậc 2 ak??

4 tháng 2 2022

Có nhưng giải bằng PT tích nhé

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

25 tháng 5 2022

ráng nhìn ha

undefined

undefined

25 tháng 5 2022

ui chữ cj đẹp ghê

Bài 1:    Giải các phương trình   a/                                    c/  b/                             d/     e/ (x +)(x-) = 0                                          g/ (3x-1)(2x-3)(x+5) = 0            h/ x2 – x = 0  f/ x2 – 2x = 0                                                    i/ x2 – 3x =...
Đọc tiếp

Bài 1:    Giải các phương trình

 

 

a/                                    c/

 b/                             d/     

e/ (x +)(x-) = 0                                          g/ (3x-1)(2x-3)(x+5) = 0           

 

h/ x2 – x = 0 

 

f/ x2 – 2x = 0                                                    i/ x2 – 3x = 0        k/ (x+1)(x+2) =(2-x)(x+2)

 

Bài 4: Giải các phương trình sau:

g)               h)

  

   n)             m)                                       

  i/ = 8 – x                                        k)  = – 4x +7

 

f.

 

Bài 6: Giải các bất phương trình sau và biểu diễn nghiệm trên trục số:

         

     j/ 3x  - (2x + 5 ) £ (2x – 3 )              k/ (x – 3)(x + 3) < x(x + 2 ) + 3        

     p/ 1+                           q)             

     b.  

1

6:

k: =>x^2-9<x^2+2x+3

=>2x+3>-9

=>2x>-12

=>x>-6

1:

h: =>x(x-1)=0

=>x=0; x=1

i: =>x(x-3)=0

=>x=0; x=3

NV
27 tháng 1 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-2+\sqrt{2}\end{matrix}\right.\)

\(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-1}{-2+\sqrt{2}}=\dfrac{2+\sqrt{2}}{2}\)

\(B=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-1\right)^2-2\left(-2+\sqrt{2}\right)=5-2\sqrt{2}\)

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

11 tháng 5 2021

Trong các phương trình sau, những bất phương trình nào tương đương với −2x−1<−9 ?  

A. x2 -16<0                 C.2x+3>11
B. x>4                         D. x2 -16>0

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4