cho f(x) = x2+x+1 CMR đa thức ko có nghiệm
giải cho mình vs nhá THANK !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)
\(f\left(x\right)=x^2+x+1=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\)với mọi x \(\in\) R
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R
Vẫy f(x) vô nghiệm
f(x) = x2+1/2x+1/2x+1/4+3/4
f(x) = x(x+1/2)+1/2(x+1/2)+3/4
f(x) = (x+1/2)(x+1/2)+3/4
f(x) = (x+1/2)2+3/4
Ta có : (x+1/2)2 luôn lớn hơn hoặc bằng 0 với mọi x
=> (x+1/2)2+3/4 luôn lớn hoặc bằng 3/4 với mọi x
=> f(x) luôn lớn hoặc bằng 3/4 với mọi x
=> f(x) không có nghiệm