K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

\(\frac{5}{12.17}+\frac{3}{34.10}+\frac{7}{60.9}+\frac{9}{27.36}\)

\(=\frac{5}{204}+\frac{3}{340}+\frac{7}{540}+\frac{9}{972}\)

\(=tự.tính.típ.nhé\)

27 tháng 7 2023

a) \(A=27\cdot36+73\cdot99+27\cdot14-49\cdot73\)

\(A=27\cdot\left(36+14\right)+73\cdot\left(99-49\right)\)

\(A=27\cdot50+73\cdot50\)

\(A=50\cdot\left(27+73\right)\)

\(A=50\cdot100\)

\(A=5000\)

b) \(B=\left(4^5\cdot10\cdot5^6+25^5\cdot2^8\right):\left(2^8\cdot5^4+5^7\cdot2^5\right)\)

\(B=\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot2^5}\)

\(B=\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot2^5}\)

\(B-\dfrac{2^8\cdot5^7\cdot\left(2^3\cdot1+5^3\cdot1\right)}{2^5\cdot5^4\cdot\left(2^3\cdot1+5^3\cdot1\right)}\)

\(B=\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\)

\(B=2^3\cdot5^3\)

\(B=10^3\)

\(B=1000\)

3 tháng 3 2017

9/20=0,45

k cho minh nha

10 tháng 3 2021

uqeafyumnjdfjjj

23 tháng 8 2016

60 x 8 + 60 x 6 + 60 x 9 = 60 x ( 8 + 6 + 9 )

                                      = 60 x 23

                                      = 1380

23 tháng 8 2016

=60x(8+6+9)

=60x23

=1380

k đúng cho mk nhe

28 tháng 3 2022

A = \(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{14}\) + \(\dfrac{1}{14}\) - \(\dfrac{1}{17}\) + \(\dfrac{1}{17}\) - \(\dfrac{1}{20}\)
   = \(\dfrac{1}{2}\) - \(\dfrac{1}{20}\)
   = \(\dfrac{9}{20}\)

 

28 tháng 3 2022

cách làm như trên

=9/20

26 tháng 6 2023

Em cần phần nào nhỉ .

26 tháng 6 2023

A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)

A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)

A = \(\dfrac{105}{106}\)

B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)

B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)

C= \(\dfrac{1}{5}\) \(\times\)\(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))

C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)

C = \(\dfrac{5}{51}\) 

D = \(\dfrac{1}{2}\) +   \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)

D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)

D = \(\dfrac{8}{9}\)

E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))

E = \(\dfrac{3}{2}\)\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)

E = \(\dfrac{147}{200}\)

2 tháng 4 2017

\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}.\)

\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(A=\frac{1}{2}-\frac{1}{20}\)

\(A=\frac{10}{20}-\frac{1}{20}\)

\(A=\frac{9}{20}\)

2 tháng 4 2017

Mình ra kết quả thứ nhất là 17/60 thứ 2 là 9/20 các bạn thấy cái nào đúng 

13 tháng 3 2018

Ta có : 

\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)

\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)

\(A=\frac{1}{2}-\frac{1}{20}\)

\(A=\frac{9}{20}\)

Vậy \(A=\frac{9}{20}\)

Chúc bạn học tốt ~