Câu 6 Tìm số nguyên x, y biết : xy + 3x - y = 6
Câu 7 Tìm x, y, z biết : (x, y, z )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a) 10 - 3x + 3 = -5
=> 13 - 3x = -5
=> 3x = 13 + 5
=> 3x = 18
=> x = 18 : 3 = 6
b) -6|x + 3| = 15 + (-3)
=> -6|x + 3| = 12
=> |x + 3| = 12 : (-6)
=> |x + 3| = -2
=> ko có giá trị x tm
c) 17 - x = 7 - 6x
=> 17 - 7 = -6x + x
=> -5x = 10
=> x = 10 : (-5) = -2
d) Ta có: x + y = 10
x = y => y + y = 10
=> 2y = 10 => y = 5
=> x = 10 - 5 = 5
a , x = 6
b , ko có giá trị x thỏa mãn
c , -2
d , 5
k và kb nếu có thể
ta co |x+7|+|12+x|=5
=>x+7=5=>x=-2(loại)
=>12+x=5=>x=-7 (tm)
=>x=-7
bn thử lấy máy tính mà bấm xem đúng ko nhé
cái này là hệ 3 ẩn rồi
===================================
a, theo bài ra
x+y=6 (1)
-y +z = - 5 (2)
(1) + (2) <=> x+z = 6-5=1 , lại có x-z=9
=> (x+z)+(x-z)=1+9<=> 2x=10<=> x=5 => z = -4
Thay x=5 vào (1) => y=6-x=6-5=1
vậy x=5 , y=1 , z = -4
:V tương tự với câu b nhé
Mk có cách khác nhé:
b) Ta có:
\(x+y-y-z-z-x=6+7+13\)
\(-2z=26\Rightarrow z=-13\)
\(\Rightarrow y=6;x=0\)
Vậy .....
a) Ta có: \(x.y.z=-7=\left(-1\right).1.7=\left(-7\right).1.1\)
\(\text{Lập bảng, ta có:}\)
\(x\) | \(-1\) | \(-1\) | \(-7\) | \(-7\) | \(7\) | \(1\) | \(1\) | \(1\) | \(7\) | \(1\) | \(1\) | \(1\) |
\(y\) | \(1\) | \(7\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-7\) | \(-7\) | \(1\) | \(7\) | \(1\) | \(1\) |
\(z\) | \(7\) | \(1\) | \(1\) | \(1\) | \(1\) | \(7\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-7\) | \(-7\) |
Vậy chỉ có \(\text{9TH}\)để x .y . z = -7
b) Ta có: \(xy+y-5=0\)
\(\Rightarrow xy+y=5\)
\(\Rightarrow y\left(x+1\right)=5=1.5=5.1=\left(-1\right)\left(-5\right)=\left(-5\right)\left(-1\right)\)
\(\text{Lập bảng ta có:}\)
\(y=\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(x+1=\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(\Rightarrow x=\) | \(4\) | \(0\) | \(-6\) | \(-2\) |
\(\text{Vậy các cặp (y;x) thỏa mãn là: (1;4) ; (5;0) ; (-1 ; -6) ; (-5 ; -2)}\)
\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,y+3\in Z\\x-1,y+3\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
Vậy \(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-;\right);\left(2;0\right);\left(4;-2\right)\right\}\)
\(xy+3x-y=6\)
⇒ \(x\left(y+3\right)-\left(y+3\right)=3\)
⇒ \(\left(x-1\right)\left(y+3\right)=3\)
Đến đây em tự xét các trường hợp nha