K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Ở bài 1 a + 3b bằng bao nhiêu vậy bạn

4 tháng 10 2017

bạn biết bđt svác sơ chứ nếu không biết có thể lên mạng tra

Áp dụng bđt svác sơ ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b};\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c};\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\)

cộng vào ta có 

\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

5 tháng 10 2017

Thêm câu nữa bạn

Rút gọn

\(P=\frac{x^2}{xy+y^2}+\frac{y^2}{xy-x^2}-\frac{x^2+y^2}{xy}\)

16 tháng 7 2015

Cách khác:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

3 tháng 7 2019

#)Giải :

\(A=1+2+2^2+...+2^{100}\)

\(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

\(B=1+3^2+3^4+...+3^{100}\)

\(3^2B=3^2+3^4+3^6+...+3^{102}\)

\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)

\(8B=3^{102}-1\)

\(B=\frac{3^{102}-1}{8}\)

\(C=1+5^3+5^6+...+5^{99}\)

\(5^2C=5^3+5^6+5^9+...+5^{102}\)

\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)

\(24C=5^{102}-1\)

\(C=\frac{5^{102}-1}{24}\)

3 tháng 7 2019

a) A = 1 + 22 + ... + 2100

=> 2A = 22 + 23 + ... + 2101

Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)

             A  = 2101 - 1

b) B = 1 + 32 + 34 + ... + 3100

=> 32B = 32 + 34 + 36 + ..... + 3102

=>  9B =  32 + 34 + 36 + ..... + 3102

Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)

            8B = 3102 - 1

              B = \(\frac{3^{102}-1}{8}\)

c) C = 1 + 53 + 56 + ... + 599

=> 53.C = 53 . 56 . 59 + ... + 5102

=> 125.C = 53 . 56 . 59 + ... + 5102 

Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)

             124.C = 5102 - 1

=>                C = \(\frac{5^{102}-1}{124}\)

17 tháng 10 2016

Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)

17 tháng 7 2015

(a+b+c)(1/a+1/b+1/c)>=9

=>1+1+1+a/b+a/c+b/a+b/c+c/a+c/b>=9

=>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6

Áp dụng bất đẳng thức cauchy cho a/b và b/a  ;b/c và c/b ; a/c và c/a

=>a/b+b/a>=2 (1)

    a/c+c/a>=2 (2)

    b/c+c/b>=2 (3)

Từ (1);(2) và (3) =>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6

Vậy (a+b+c)(1/a+1/b+1/c)>=9

 

7 tháng 9 2018

cô si 3 sô a+b+c>= căn bậc 3 abc tg tự co 1/a + 1/b +1/c >= căn bậc 3 1/abc nhân vào co dpcm

16 tháng 7 2017

mai bn thi cái j thế !

16 tháng 7 2017

truong minh chon lop nguon ây ma