Chứng minh /a+b/\(\le\)/1+ab/; với /a/,/b/\(\le\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/49527613309.html
ở đây nữa:
https://hoc24.vn/hoi-dap/question/32718.html
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\((a^2+ab-3a-b+2)(b^2+ab-a-b)\)
\(=[a(a+b-2)-a-b+2][b(b+a)-(a+b)]\)
\(=[a(a+b-2)-(a+b-2)][b(b+a)-(a+b)]\)
\(=(a+b-2)(a-1)(b+a)(b-1)\)
Vì \(0\leq a,b\leq \Rightarrow \left\{\begin{matrix} a+b-2\leq 0\\ a-1\leq 0\\ b+a\geq 0\\ b-1\leq 0\end{matrix}\right.\)
\(\Rightarrow (a^2+ab-3a-b+2)(b^2+ab-a-b)=(a+b-2)(a-1)(b+a)(b-1)\leq 0\)
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)(1)
Tiếp tục chứng minh ta được: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1\ge c\\ab\ge0\end{matrix}\right.\)(2)
Cộng theo vế pt(1) với pt(2) ta được:
\(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(ab+1\right)\ge a+b+c\)
Nên: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\)
Chứng minh tương tự suy ra đpcm
Câu hỏi của Phạm Quốc Anh - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vào đây đi:
https://hoc24.vn/hoi-dap/question/32718.html
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)
cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)
Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)
chứng minh tương tự suy ra đpcm
giúp nhiệt tình nha