K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

bằng 1+2+3+4+5+6+7+8+9+10

24 tháng 1 2022

Giải:

Vì (2x-4)(x+4)>0 nên (2x-4)(x+4) là số nguyên dương

Nên 2x-4 và x+4 là 2 số nguyên cùng dấu.

+) Nếu 2x-4 và x+4 cùng là số nguyên âm

Khí đó:  \(\hept{\begin{cases}2x-4< 0\\x+4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 0+4\\x< 0-4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 4\\x< -4\end{cases}}\)\(\hept{\begin{cases}x< \left(4:2\right)=2\\x< -4\end{cases}}\)

<=>   -4 < 2 < x

\(\Leftrightarrow x\in\left\{3;4;5;6;...\right\}\)

+) Nếu 2x-4 và x+4 cùng là 2 số nguyên dương

Khi đó: \(\hept{\begin{cases}2x-4>0\\x+4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>0+4\\x>0-4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>4\\x>-4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\left(4:2\right)=2\\x>-4\end{cases}}\)

<=>  x > 2 > -4

\(\Leftrightarrow x\in\left\{3;4;5;6;...\right\}\)

Vậy \(x\in\left\{3;4;5;6;...\right\}\)

_HT_

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

26 tháng 8 2021

a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)

Vì \(x+3>x-2\)

nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)

c, \(\left(5-2x\right)\left(x+4\right)>0\)

TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)

TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )

bạn làm tương tự nhé 

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với

a: =>(x+1)(2x-3)<0

=>-1<x<3/2

b:=>(x-3)(x-6)>0

=>x>6 hoặc x<3

c: =>(x+2)(x-5)<0

=>-2<x<5

3 tháng 9 2020

a) Nhận xét: \(x-1< x+4\)

=> \(\hept{\begin{cases}x-1< 0\\x+4>0\end{cases}}\Rightarrow-4< x< 1\)

b) Nếu: \(\hept{\begin{cases}x>0\\4-x>0\end{cases}}\Rightarrow0< x< 4\)

Nếu: \(\hept{\begin{cases}x< 0\\4-x< 0\end{cases}}\Rightarrow∄x\)

c) Nếu: \(\hept{\begin{cases}1-3x>0\\8+x< 0\end{cases}}\Rightarrow x< -8\)

Nếu: \(\hept{\begin{cases}1-3x< 0\\8+x>0\end{cases}\Rightarrow}x>\frac{1}{3}\)

d) Nếu: \(\hept{\begin{cases}2x+6>0\\4-x>0\end{cases}}\Rightarrow-3< x< 4\)

Nếu: \(\hept{\begin{cases}2x+6< 0\\4-x< 0\end{cases}}\Rightarrow∄x\)

3 tháng 9 2020

a)(x-1).(x+4) < 0 => x-1 và x+4 khác dấu => x-1 < 0 , x+4> 0 ( x-1<x+4) => -1>x>-4
các câu b,c tương tự
d)\(\frac{2x+6}{4-x}=-\frac{-6-2x}{4-x}=-\frac{-14+\left(8-2x\right)}{4-x}=\frac{14}{4-x}-2\)
\(\Rightarrow\frac{14}{4-x}>2\Rightarrow x< 2\)