Cho 2xy+5x+6y=100 và x,y > 0. Tính GTNN của S=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt t=x+y
x^2 +2xy+6x+6y+2y^2+8=0
x^2+2xy+y^2+6(x+y)+8= -y^2
(x+y)^2 + 6(x+y)+8 = -y^2
t^2 +6t +8= -y^2
(t+2)(t+4) = -y^2
do y^2 >=0 với mọi y
-y^2 <=0 với mọi y
t^2+6t+8<=0
(t+2)(t+4)<=0
* Trường hợp 1: t+2<=0 và t+4>=0 (1)
t<=-2 và t>=4
* trường hợp 2: t+2>=0 và t+4<=0 (2)
t>= -2 và t<= -4 ( vô nghiệm)
Từ (1), (2) ta có:
-4<= t <=-2
-4 <= x+y <= -2
-4 + 2016 <= x+y+ 2016 <= -2 +2016
2012 <= x+y +2016 <= 2014
Bmin= 2012
Bmax= 2014
*Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0
thì x=-4 và y=0
* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0
thì x=-2 và y=0
vậy Bmin= 2012 khi (x,y) = (-4, 0)
Bmax= 2014 khi (x,y)= (-2,0)
Mình biết hơi muộn
\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)
\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)
\(\Rightarrow-1\le x+y+3\le1\) .
\(\Rightarrow2012\le x+y+3+2013\le2014\)
\(\Rightarrow2012\le B\le2014\)
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
Ta có :
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x^2+y^2+3^2+2xy+6x+6y\right)+\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Với mọi y ta có :
\(y^2\ge0\) \(\Leftrightarrow1-y^2\le1\)
\(\Leftrightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow-4\le x+y\le-2\)
\(\Leftrightarrow-6056\le M\le-2019\)
Vậy...
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Ý tưởng của bài này là ta sẽ quy bđt về dạng 1 biến
Dễ thấy:
\(2xy+5x+6y=100\Leftrightarrow x=\dfrac{100-6y}{2y+5}\)
Do đó:
\(S=\dfrac{100-6y}{2y+5}+y=\dfrac{2y^2-y+100}{2y+5}\)
Ta xét:
\(S-\left(\sqrt{230}-\dfrac{11}{2}\right)=\dfrac{\left(2y-\sqrt{230}+5\right)^2}{2}\ge0\)
Nên gtnn của S là:
\(S_{min}=\sqrt{230}-\dfrac{11}{2}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{230}}{2}-3\\y=\dfrac{\sqrt{230}-5}{2}\end{matrix}\right.\)