K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

\(P=\left(\frac{1}{x}+\frac{1}{y}\right).\sqrt{1+x^2y^2}\)

\(\rightarrow P>2.\sqrt{\frac{1}{x}.\frac{1}{y}}.\sqrt{1+\left(xy\right)^2}\)

\(\rightarrow P>2.\sqrt{\frac{1}{xy}}.\sqrt{1+\left(xy\right)^2}\)

\(\rightarrow P>2\sqrt{\frac{1}{xy}+xy}\)

Đặt \(xy=t\)

\(\rightarrow P>2\sqrt{\frac{1}{t}+t}\)

Ta có :

\(1>x+y>2\sqrt{xy}\)

\(\rightarrow\sqrt{xy}< \frac{1}{2}\)

\(\rightarrow xy< \frac{1}{4}\)

\(\rightarrow t< \frac{1}{4}\)

Lại có :

\(\frac{1}{t}+t=\frac{15}{16t}+\left(\frac{1}{16}+t\right)\)

\(\rightarrow\frac{1}{t}+t>\frac{15}{16.\frac{1}{4}}+2\sqrt{\frac{1}{16}.t}\)

\(\rightarrow\frac{1}{t}+t>\frac{17}{4}\)

\(\rightarrow B>2.\sqrt{\frac{17}{4}}\)

\(\rightarrow B>\sqrt{17}\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

19 tháng 1 2018

a) Ta có:

x - y > 0

\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )

\(\Rightarrow\)x > y ( đpcm )

b tương tự nha

5 tháng 8 2017

ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y 
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0 
  k cho mik nhoa~

5 tháng 8 2017

Đúng ko