K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Lấy $x_1\neq x_2\in\mathbb{R}$. Để hàm số đồng biến thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow \frac{(3m-6)(x_1^2-x_2)^2}{x_1-x_2}=(3m-6)(x_1+x_2)>0$

Khi $x>0$ thì $x_1+x_2>0$. Để $y$ đồng biến khi $x>0$ thì $3m-6>0\Leftrightarrow m>2$

Khi $x<0$ thì $x_1+x_2< 0$. Để $y$ đồng biến khi $x< 0$ thì $3m-6< 0\Leftrightarrow m< 2$

4 tháng 8 2019

hình như đạo hàm nhưng em ms hk lớp 9 lên ko bt

5 tháng 4 2020

a) Hàm số đồng biến với x<0 => a<0

a<0 <=> m+2<0 <=> m<-2

b) Ta có y=(m+2)x2

Thay y=4; x=-1 ta có :

4=(m+2).(-1)2

4=m+2

m=4-2

m=2

5 tháng 4 2020

Em cảm ơn cô

24 tháng 1 2020

P/s: Bài này thì không có chắc tại cũng mới học qua

\(a)\) Hàm số trên nghịch biến

\(\Leftrightarrow3m-1< 0\)

\(\Leftrightarrow3m< 1\)

\(\Leftrightarrow m< \frac{1}{3}\)

Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến

\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)

\(\Leftrightarrow m-2=0\)

\(\Leftrightarrow m=2\)

\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths

Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)

\(\Leftrightarrow-3m+1+m-2=1\)

\(\Leftrightarrow-2m-1=1\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)

\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)

Ta có: \(y=2.1-1\)

\(\Leftrightarrow y=2-1=1\)

\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)

Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)

Ta có: \(\left(3m-1\right)1+m-2=1\)

\(\Leftrightarrow3m-1+m-2=1\)

\(\Leftrightarrow4m-3=1\)

\(\Leftrightarrow m=1\)

Vậy \(m=1\)

\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)

\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)

\(\Leftrightarrow3m-1\ne-2\)

\(\Leftrightarrow3m\ne3\)

\(\Leftrightarrow m\ne1\)

Vậy \(m\ne1\)

\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)

\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung

\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)

Vậy không tìm được giá trị \(x\)nào TMĐK