3 - 2 =
7 - 3 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
5: \(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)
\(=3-5-6+\dfrac{-1}{4}+\dfrac{7}{4}+\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{6}{5}-\dfrac{3}{2}\)
\(=-8+\dfrac{3}{2}+1+\dfrac{-3}{10}\)
\(=-7+\dfrac{15-3}{10}=-7+\dfrac{6}{5}=-\dfrac{29}{5}\)
6: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=6-5-3-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}+\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
7: \(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)
\(=9-2-10+\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{-3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\)
=-3+1
=-2
8: \(=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=8+6-3+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}-1-\dfrac{2}{4}\)
\(=11+2-1-\dfrac{1}{2}\)
=11+1/2
=11,5
2) -3(4 - 7) + 5(-3 + 2)
= -3.4 + 3.7 - 5.3 + 5.2
= -12 + 21 -15 + 10
= 31 - 27
= 4
4) -5(2 - 7) + 4(2 - 5)
= -5.2 + 5.7 + 4.2 - 4.5
= -10 + 35 + 8 - 20
= 38 - 30
= 8
3: \(=20-12-8+12=20-8=12\)
5: \(=-18-42-21-35=-116\)
3: \(=-15+18-12+8=-27+26=-1\)
2: \(=-12+21-15+10=9-5=4\)
Ta có
A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)
Đặt C = 1 + 7 + 72 + 73+...+711
7C = 7 + 72 + 73 + ... + 711 + 712
=> 6C = 712 - 1
C = \(\dfrac{7^{12}-1}{6}\)
Đặt D = 1 + 7 + 72 + 73+...+710
7D = 7 + 72 + 73 + ... + 710 + 711
=> 6D = \(7^{11}-1\)
D = \(\dfrac{7^{11}-1}{6}\)
=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)
A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)
A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)
A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003
Lại có:
B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\
Đặt H = \(1+3+3^2+3^3+...+3^{11}\)
3H = \(3+3^2+3^3+...+3^{12}\)
=> 2H = \(3^{12}-1\)
H = \(\dfrac{3^{12}-1}{2}\)
Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)
3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)
=> 2Q = \(3^{11}-1\)
Q = \(\dfrac{3^{11}-1}{2}\)
=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)
B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)
B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)
B = \(\dfrac{3^{12}-1}{3^{11}-1}\)
B = 3, 00001129
Vì 7, 000000003 > 3, 00001129
=> A > B
Vậy A > B
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
3-2=1
7-3=4
3-2=1
7-3=4