K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

S=3/1.4+3/4.7+3/7.10+.....+3/40.43+3/43.46

S= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

S= 1-1/46

=> S<1

24 tháng 4 2016

S=3.(1/1-1/4+1/4-1/7+.........+1/40-1/43+1/43-1/46)          

S=3.(1/1-1/46)

S=3.45/46

S=2/43/46

=> 2/43/46>1

=>S>1

23 tháng 4 2017

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1

\(S=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\right)\)

\(S=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\right)\)

\(\Rightarrow S=1-\frac{1}{46}\Rightarrow S< 1\left(đpcm\right)\)

23 tháng 4 2017

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}< 1\)

\(\Rightarrow S< 1\left(đpcm\right)\)

23 tháng 4 2016

Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1

ĐPM : S < 1

23 tháng 4 2016

S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

=>S<1

1 tháng 5 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}< 1\)

Vậy \(S< 1\)

Chúc bạn học tốt !!! 

1 tháng 5 2018

Chi tiết hơn đc ko? 

28 tháng 6 2016

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}< 1\)

Chứng tỏ S < 1

Ủng hộ mk nha ^_^

28 tháng 6 2016

S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)

  \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)

   \(=1-\frac{1}{46}=\frac{45}{46}< 1\)

1 tháng 5 2015

= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

= 1 - 1/46 = 45/46 < 1

30 tháng 4 2016

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}<1\)

=>chứng minh bị sai hoặc đề sai

30 tháng 4 2016

S=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{43.46}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{43}-\frac{1}{46}\)

=\(1-\frac{1}{46}<1\)

\(\Rightarrow S<1\)

18 tháng 4 2017

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}\)

Vì \(\frac{1}{46}>0\Rightarrow1-\frac{1}{46}< 1\)

Vậy \(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{43.46}< 1\)

14 tháng 8 2018

S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103

S=1/1-1/103

S=102/103

Vì 102/103<1 nên S<1

14 tháng 8 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)

\(S=1-\frac{1}{103}\)

\(S=\frac{102}{103}< 1\)