K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Ta co

1256/1257 <1 < 18/17

suy ra 1256/1257 < 18/17

21 tháng 4 2016

vì \(\frac{18}{17}>1\)

\(\frac{18}{17}>1\)

=> \(\frac{1256}{1257}<\frac{18}{17}\)

6 tháng 4 2015

Bài 1: So sánh 2 phân số cùng mẫu: \(\frac{-2}{5}<\frac{-1}{5}\)

Bài 2:

\(\frac{1256}{1257}<1;\frac{18}{17}>1\)\(\Rightarrow\frac{1256}{1257}<\frac{18}{17}\)

 

\(\frac{-2}{5}<\frac{-1}{5}\)
\(\frac{1256}{1257}<1<\frac{18}{17}=>\frac{1256}{1257}<\frac{18}{17}\)

19 tháng 3 2018

Ta có : 1256/1257 < 1 < 18/17

=> 1256/1257 < 18/17

Vậy 1256/1257 < 18/17

19 tháng 3 2018

Xin lỗi các bạn ko có câu cuối cùng nhé ^^

6 tháng 5 2018

ai trả lời thì mình sẽ k ngay cho người đó

11 tháng 3 2017

Bài 1:

Ta thấy A < 1

=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)

Vậy A < B

Bài 2:

Ta thấy C < 1

=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)

Vậy C < D

11 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2-32}{17^{19}-2-32}=\frac{17^{18}-34}{17^{19}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}=B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~

11 tháng 3 2018

Công thức: \(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a;b;c\inℕ^∗\right)\)

Ta có:

\(A=\frac{17^{18}-2}{17^{19}-2}< B=\frac{17^{17}-2-32}{17^{18}-2-32}=\frac{17^{17}-34}{17^{18}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}\)

Từ đó ta kết luận A < B

18 tháng 3 2018

Ta có:

\(A=\frac{17^{18}+1}{17^{19}+1}\)

\(17A=\frac{17\left(17^{18}+1\right)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}\)

\(17A=\frac{(17^{19}+1)+16}{(17^{19}+1)}=1+\frac{16}{17^{19}+1}\)          (1)

\(B=\frac{17^{17}+1}{17^{18}+1}\)

\(17B=\frac{17\left(17^{17}+1\right)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}\)

\(17B=\frac{(17^{18}+1)+16}{(17^{18}+1)}=1+\frac{16}{17^{18}+1}\)          (2)

Từ (1) và (2) => \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)

=>\(17A< 17B\)

Hay \(A< B\)

Vậy \(A< B\)

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)

Vậy \(A< B\)

Chúc bạn học tốt ~