cho p là số nguyên tố lớn hơn 3 chứng minh rằng 4p + 1 và 4p - 1 ko thể đồng thời là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
\(\Rightarrow\) p có dạng \(p=3k+1\) hoặc \(p=3k+2\) với k là số tự nhiên và \(k\ge1\)
Nếu \(p=3k+1\Rightarrow p+2=3k+3=3\left(k+1\right)⋮3\) là hợp số (ktm)
\(\Rightarrow p=3k+2\)
Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\) là hợp số (đpcm)
Bài 2 :
Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )
Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2
Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số
Vậy ...
Bài 1 :
Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố
Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố
Bài 2
Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3
Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số
Chúc bạn học tốt ( -_- )
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$.
Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề)
$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên \(p=3k+1\) hoặc \(p=3k+2\) \(\left(k\inℕ^∗\right)\)
Nếu \(p=k+1\) thì \(2p+1=2.\left(3k+1\right)+1=6k+3\in3\) và \(6k+3>3\)
\(\Leftrightarrow2p+1\) là hợp số \(\left(loại\right)\)
Nếu \(p=3k+2\) . Khi đó \(4p+1=4.\left(3k+2\right)=1=12k+9\in3\)
Và \(12k+9>3\) nên là hợp số \(\left(nhận\right)\)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại)
Do đó $p=3k+2$.
Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)
Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1
hoặc 3k+2 ( k\(\in\)N*)
+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow4k+3>0\)
\(\Rightarrow3\left(4k+3\right)\)là hợp số
\(\Rightarrow3k+2\)( loại)
+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố)
\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)
Theo đề ra: p là số nguyên tố lớn hơn 3 => p không chia hết cho 3
=> p = 3k + 1 hoặc p = 3k + 2
* Với p = 3k + 1 thì:
2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 )
=> 2p + 1 chia hết cho 3
Ta có: 2p + 1 > 3
=> 2p + 1 là hợp số ( loại )
* Với p = 3k + 2 thì:
4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 )
=> 4p + 1 chia hết cho 3
Ta có: 4p + 1 > 3
=> 4p + 1 là hợp số
Vậy ...
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
B , nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI
nếu p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này
vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số
chứng tỏ 4p+1 là hợp số (đpcm)
Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1
Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số (LOẠI)
VẬY ......................
p là snt >3 => p có dạng 3k+1 hoặc 3k+2
nếu p có dạng 3k+1 thì 4p-1= 4.(3k+1)-1= 12k +4-1= 12k+3 là hợp số
p có dạng 3k+2 thì 4p+1= 4.(3k+2)+1= 12k+8+1= 12k+9 là hợp số
từ đó kết luận