Cho a,b,c là các số thực thỏa \(0\le a,b,c\le3\) và \(a+b+c=4\)
Tìm MAX của A= a2+b2+c2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
P≤√a2+2√aab+2b2+√b2+2√2bc+2c2+√c2+2√2ca+2a2P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2
P≤√(a+√2b)2+√(b+√2c)2+√(c+√2a)2P≤(a+2b)2+(b+2c)2+(c+2a)2
P≤(1+√2)(a+b+c)=1+√2P≤(1+2)(a+b+c)=1+2
Dấu "=" xảy ra khi (a;b;c)=(0;0;1)(a;b;c)=(0;0;1) và các hoán vị
Ta có \(a\ge0,a-3\le0\)nên \(a\left(a-3\right)\le0\)
\(\Rightarrow a^2-3a\le0\)\(\Leftrightarrow a^2\le3a\)
Tương tự , \(b^2\le3b,c^2\le3c\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)=12\)
max A =12 \(\Leftrightarrow\hept{\begin{cases}a=3\\b=2\\c=1\end{cases}}\)hoặc\(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)hoac\(\hept{\begin{cases}a=1\\b=3\\c=2\end{cases}}\)
\(\Leftrightarrow\)trong a , b , c có một số bằng 3 , một số bằng 2 , một số bằng 1