Cho x> y > 0 và 2x^2+5y^2 =7xy tính x/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2+5y2=7xy <=>(x-y)(2x-5y)=0
<=> \(\orbr{\begin{cases}x=y\\2x=5y\end{cases}}\)
thay vào là được
\(3x^2+2y^2=7xy\)
\(\Leftrightarrow3x^2-7xy+2y^2=0\)
\(\Leftrightarrow3x^2-6xy-xy+2y^2=0\)
\(\Leftrightarrow3x\left(x-2y\right)-y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(3x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-y=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=y\\x=2y\end{matrix}\right.\)
+) TH1 : \(y=3x\)
\(\Leftrightarrow A=\dfrac{3x+y}{7y-x}+\dfrac{6x-9y}{2x+y}\)
\(=\dfrac{3x+3x}{7.3x-x}+\dfrac{6x-9.3x}{2x+3x}\)
\(=\dfrac{9x}{20x}+\dfrac{-21x}{5x}\)
\(=-\dfrac{15}{4}\)
+) TH2 : \(x=2y\)
\(\Leftrightarrow A=\dfrac{3x+y}{7y-x}+\dfrac{6x-9y}{2x+y}\)
\(=\dfrac{3.2y+y}{7y-2y}+\dfrac{6.2y-9y}{2.2y+y}\)
\(=\dfrac{7y}{5y}+\dfrac{3y}{5y}\)
\(=2\)
Vậy...
x/y+3.y/x=4
đặt b=y/x<1
1/b+3b=4
3b^2-4b+1=0
b=1loia
b=1/3
(2+5b)/(1-2.b)
\(P=\frac{2+5.\frac{1}{3}}{1-2.\frac{1}{3}}=\frac{\frac{11}{3}}{\frac{1}{3}}=11\)
\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)
\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A
\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
Giải:
Ta có: \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\Leftrightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Mà \(x>y>0\Leftrightarrow x-y>0\)
Do đó \(x-3y=0\Leftrightarrow x=3y\)
Thay vào \(\Rightarrow A=\frac{2x+5y}{x-2y}=\frac{6y+5y}{3y-2y}=\frac{11y}{y}=11\)