So sánh (a+2)(b+2) với 2a + 2b + 4 khi a,b khác dấu
Các bạn giải cho mình tham khảo nha!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4
<=> A = 4a2c2 − ( a4+b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2 )
<=> A = 4a2c2 − ( a2 − b2 + c2)2
<=> A = ( 2ac + a2 − b2 + c2 ) ( 2ac − a2 + b2 − c2 )
<=> A = [ (a+c)2 − b2 ] ( b2 − (a−c)2)
<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\
a+b+c>0
a+c−b>0
b+a−c>0
b−a+c>
=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
A>0 (Dpcm)
Đặt \(\hept{\begin{cases}-a+2b+2c=x\\2a-b+2c=y\\2a+2b-c=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên x,y,z>0
Khi đó : \(VT=\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\)
\(=\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\)
\(\ge\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\)(BĐT Cauchy cho 2 số không âm)
\(=\frac{4}{9}.3-\frac{1}{3}=\frac{4}{3}-\frac{1}{3}=1\)
\(\frac{a}{2b+2c-a}+\frac{b}{2a+2c-b}+\frac{c}{2a+2b-c}\)
\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2ab+2bc-b^2}+\frac{c^2}{2ac+2bc-c^2}\)
đặt pt là P
\(P\ge\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2ab+2bc-b^2+2ac+2bc-c^2}\)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\)
\(a^2+b^2+c^2\ge2ab+2bc+2ca\)(BĐT tương đương)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2ab+2ac+2bc}\)
\(\left(a+b+c\right)^2\ge2ab+2ac+2bc\)(BĐT tương đương)
\(P\ge1\)
mình ko chắc đã đúng
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)
\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)
c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức
\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)
Nhân cả hai vế của bất đẳng thức a + 1 ≤ b + 2 với 2 > 0 ta được
2(a + 1) ≤ 2(b + 2) Û 2a + 2 ≤ 2b + 4.
Đáp án cần chọn là: D
Nhân cả hai vế của bất đẳng thức a - 2 ≤ b - 1 với 2 > 0 ta được:
2(a - 2) ≤ 2(b - 1) Û 2a - 4 ≤ 2b - 2.
Đáp án cần chọn là: D
Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc
Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.
Chọn đáp án C.
bài này đơn giản mà chỉ cần phân tích là thấy thôi
(a+2)(b+2)=ab+2a+2b+4
ta có: 2a+2b+4=2a+2b+4
ab+2a+2b+a<2a+2b+4(khi a,b khác dấu thì a.b sẽ là số âm)