Tính:
1-1/21-1/22-1/23-...-1/210
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
(1 + 2 + 22 + 23 + 24 + … + 210): 2047
= [(1+210).210 : 2 ] : 2047
= [211. 105] : 2047
= 22155 : 2047
mình tính đến khúc này thì thấy chia ko hết :Đ
bạn xem lại đề hoặc có thể mik sai thật
Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)
^^
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
\(A=47.36+64.47+15\)
\(A=47.\left(36+64\right)+15\)
\(A=47.100+15\)
\(A=4700+15\)
\(A=4715\)
\(B=27+35+65+73+75\)
\(B=\left(27+73\right)+\left(35+65\right)+75\)
\(B=100+100+75\)
\(B=275\)
\(C=37+37.15+84.37\)
\(C=37.\left(1+15+84\right)\)
\(C=37.100\)
\(C=3700\)
\(D=\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+\frac{1}{23.24}\)
\(D=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+\frac{1}{23}-\frac{1}{24}\)
\(D=\frac{1}{20}-\frac{1}{24}\)
\(D=\frac{24}{480}-\frac{20}{480}\)
\(D=\frac{4}{480}=\frac{1}{120}\)
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(E=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(E=1-\frac{1}{50}\)
\(E=\frac{49}{50}\)
\(a.21-22+23-24\)
\(=\left(-1\right)+\left(-1\right)=-2\)
\(b.125-\left(115-99\right)\)
\(=125-16=109\)