Tìm a,b thuộc N nhỏ nhất với a,b >1 và a^7 =b^8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 20/39>1/2; 18/41<1/2 suy ra 20/39>18/41
22/27>22/29
18/43 = 1- 25/43
14/39 = 1- 25/ 39
mà 25/43< 25/43 suy ra 18/43> 14/39 (vì cùng 1 số mà trừ đi số nhỏ hơn thì sẽ lớn hơn số đó mà lại đem trừ đi số lớn hơn)
Vậy A>B
a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)
=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)
Dấu "=" xảy ra khi: a=b
Vậy GTNN của N là 9/2 tại a=b
b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)
<=>(a+b)2-2ab\(\ge\frac{9}{2}\)
<=>\(9-2ab\ge\frac{9}{2}\)
<=>\(2ab\le\frac{9}{2}\)
<=>\(ab\ge\frac{9}{4}\)
<=>\(ab+2\le\frac{17}{4}\)
Dấu "=" xảy ra khi a=b
Vậy GTLN của P là 17/4 tại a=b