K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)=>\(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

=>abc=(bc+ac+ab)(a+b+c)=ab2+a2b+ac2+a2c+bc2+bc2+3abc

=ab(a+b)+ac(a+c)+bc(b+c)+3abc

=>ab(a+b)+ac(a+c)+bc(b+c)+2abc=0

=>ab(a+b+c-c)+ac(a+c+c-c)+bc(b+c)+2abc=0

=>(a-c)[ac+ab)]+(b+c)(ab+bc)+2ac2+2abc=0

=>(a-c)a(c+b)+(b+c)b(a+c)+2ac(b+c)=0

=>(b+c)[(a-c)a+b(a+c)+2ac]=0

=>(b+c)(a2-ac+ab+bc+2ac)=0

=>(b+c)(a2+ab+bc+ac)=0

=>(b+c)[a(a+b)+c(a+b)]=0

=>(b+c)(a+c)(a+b)=0

*A=(b+c)(a+c)(a+b)+9=0+9=9.

 

19 tháng 1 2022

*Dành cả 30 phút ấy :)

28 tháng 12 2020

Cho a,b,c thỏa mãn \(\dfrac{a b-c}{c}=\dfrac{b c-a}{a}=\dfrac{c a-b}{b}\) Tính giá trị M = \(\left(1 \dfrac{b}{a}\right... - Hoc24

click vô link để tham khảo nha 

28 tháng 12 2020

thanks

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

Xét \(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=126.16=2016\)

\(\Leftrightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=2016\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=2013\)

Vậy A = 2013